EXACT ANALYSIS OF NONPRISMATIC BEAMS

By H. J. Al-Gahtani' and M. S. Khan?

ABSTRACT: An exact analysis of nonprismatic beams with general boundary conditions is presented. The
analysis is based on the boundary integral method. The fundamental solutions for nonprismatic beams of linear
and parabolic profiles are derived. The fundamental solution is used as a weighing function to transform the
governing equation and the boundary condition equations into four algebraic equations. The resulting algebraic
equations offer exact relations among the physical variables at the beam supports. The method is tested through

two numerical examples to show its accuracy.

INTRODUCTION

Members of variable stiffness are commonly used to opti-
mize the distribution of weight and strength, achieve a better
distribution of the internal stresses, reduce the dead load, and
sometimes to satisfy architectural and functional requirements
in many engineering structures—such as highway bridges,
buildings, space and aircraft structures—as well as in many
mechanical components and machines. Therefore, the analysis
of nonprismatic beams is of interest to many mechanical, aero-
nautical, and structural engineers. It is a standard engineering
practice to analyze beams of uniform and variable depth on
the basis of Bernoulli-Euler beam theory, which is quite ade-
quate as long as the tapering ratio is not too great (Boley
1963). Although the solution of the governing equation—
which is a fourth-order ordinary differential equation with var-
iable coefficients—can be obtained through successive inte-
gration, the procedure becomes tedious when dealing with
general depth variation, general loading, and general boundary
conditions. Generally, except for some particular cases [e.g.,
Timoshenko and Young (1965); Hibbeler (1990); Lee et al.
(1990)] no closed-form solution is available. The available an-
alytical solutions involve lengthy and tedious calculations. To
simplify the method, tables and charts for the stiffness and
beam constants are prepared and published by the Portland
Cement Association (PCA 1958). However, though these ta-
bles simplify the solution, they have the following limitations:

1. They can give the beam constants only for straight and
parabolic haunches.

2. They are applicable for two types of loading, i.e., con-
centrated and uniformly distributed loading. Partial load-
ing cases are not considered.

Thus, a wide variety of approximate and numerical tech-
niques have been developed through the years. In the finite
element and finite difference methods, each tapered span is
broken into a number of uniform elements (stepped represen-
tation) with known uniform stiffness that are superimposed to
produce the stiffness of the member. This clearly indicates that
the number of equations to be solved increases as the number
of elements/spans increases. A detailed literature survey on this
topic has been done by Khan (1995).

The objective of this note is to present a simple yet exact
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procedure for the analysis of nonprismatic beams. The pro-
posed procedure is based on the boundary integral method
(Banerjee and Butterfield 1981) and does not require the dis-
cretization of the beam span as done in the domain-type meth-
ods. The variation of the beam depth is assumed to be general
with the requirement of being second-order differentiable. The
boundary conditions are also assumed to be general. The pro-
posed procedure is explained through the two cases of linear
and parabolic depth variation. The procedure is tested through
two numerical examples.

BOUNDARY INTEGRAL EQUATIONS

The governing differential equation for transverse deflection
w(x) of a nonprismatic Bernoulli-Euler beam of finite length
L, subjected to transverse loads and with general, linear elas-
tically end-restrained boundary conditions as shown in Fig. 1,
is

d’ d*w

E(El(x) W) +4qx)=0, 0<x<L (1)
where EI(x) is variable flexural rigidity and g(x) is the distrib-
uted load.

The boundary integral method (BIM) begins by considering
the domain of the problem in its entirety, without subdivisions.
All the discretization is performed on the boundary. In this
case there are only two “nodes’’ involved, regardless of the
complexity of the problem. The two nodes are placed, respec-
tively, at x = 0 and at x = L as shown in Fig. 1. The slope
6(x), moment M(x), and shear V(x) are related to the primary
variable, deflection w(x) by

2

d d
0(x) =d—’:; M(x)=E1(x);x—‘Z;

The associated boundary conditions at x = 0 are

d*w

d
Vix) = Tx (El(x) —dx_2> (Qa-c)

V(0) = Kw(0); M(0) = K,6(0) (3a,b)
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FIG. 1. General, Linear, Elastically End-Restrained, Nonpris-
matic Beam Subjected to Transverse Loads



Similarly at x = L

V(L) = Kw(l); M(L) = K,8(L) (Bc,d)

where K, = translational spring constant and K, = rotational
spring constant and therefore the above boundary conditions
can represent any of the following cases:

* Free boundary when K, =K, =0

+ Simple support when K, = «, K, =0

* Fixed support when K, = «, K, = o

* General elastic support when 0 < K, <® and 0 < K, < »

In order to derive the boundary integral equations, let us fol-
low the procedure given by Butterfield (1979), i.e., multiply
the left hand side of (1) by a weighting function w* and in-
tegrate over the domain of the beam (see Banerjee and But-
terfield 1981).

L
4’ d?
f [E (E""’ dTw> * q"‘)] wedx=0 (4
]

Integrating the first term in (4) by parts, four times, we get

L L
d? d*w*
J(; w ‘—1;-2- (El(x) _dF) dx + J; qw* dx
— [-Vw* + MO* — M* + wV*lzt =0 5)

where 0*(x), M*(x), and V*(x) are related to w* through the
same differential operators given in (2). Let us choose w*(x,
£) such that it satisfies the following differential equation:

d2 dZ %
= (EI(x) 7;-”2—) +8x—6=0 6)

where 8 = Dirac delta function, which represents a unit con-
centrated force at a distance £ from the origin and has the
following property:

L
f gxd(x — &) dx = g(§) Q)
(]
Then (4) becomes
L
w(E) = [Vw* — MO* + OM* — wV*IZf + f qlxw* dx,
0

O0<éE<L ®)

Thus, once the fundamental solution w* is known, (8) gives
the deflection w at any point & inside the domain of the beam
in terms of the values of deflection, slope, moment, shear at
the beam ends, and the given load g(x). Furthermore, (8) may
be differentiated with respect to § to produce the slope, i.e.

x=L

dw* dex* dM* dv*

°(§)=[le§_M7€+° a d&]
x=0

L
aw*
+ —dx; 0 L
L"(") ag 4 0<g< ©)

The BIM proceeds from this point by first solving for the
unknown boundary data (that has not been specified) in terms
of that which has been specified. To successfully implement
this procedure, four simultaneous equations are obtained in the
following matrix form by applying (8) and (9) at the boundary
points, i.e., £ = 0 and § — L (Banerjee and Butterfield 1981):

1 — V*, 0) M*(©0, 0) V*(L, 0) —M*(L, 0)
—-V*(0,0) 1+ M*'(0,0) V*'(L, 0) -M*'(L, 0)
—V*,L) M*(0, L) 1+ VXL, L) —M*(L, L)
—V*'(0, L) M*'(0, L) V*'(L,L) 1—-M*(,L)

w) —w*(0,0) 6*0,0) w*{L,0 —0%L,0
6l _| w00 0*00 w*L 0 —06*(L,0)
wy[ | =w*©,L) 0*0,L) wx({I,L) —6*L,L)
8, —-w*'(0,L) 6*'(0,L) w*'(L,Ly —0*'(L,L)
r fL R
g(x)w*(x, 0) dx
"
Vi f q(x)w*'(x, 0) dx
M [}
viit] [
M, j g(x)w*(x, L) dx
"
f q(x)w*'(x, L) dx
L Jo ) 10)

where the prime indicates differentiation with respect to £, and
the subscripts 1 and 2 indicate the node at x = 0 and x = L,
respectively. The above equation can be written in short

[HI{A} = [G]{F} + {B}

where the elements of the matrices H, G, and B are the lim-
iting values of the fundamental solution and its derivatives at
the two ends of the beam. Since unknown values of {A} align
with known values of {F}, the system of equations may be
rearranged into the following form:

[ANX} = (Z} an

where {X} contains all the boundary unknowns and {Z} con-
tains the algebraic sum of the products of all known boundary
values with their corresponding columns of [G] or [H] as the
case may be.

Once the system (11) is solved, all the boundary values will
be known. These are substituted into the domain equation for
deflection, i.e., (8), and the resulting equation can be evaluated
at any point £ The same is true for the domain equation for
slope, i.e., (9). Also (9) may be differentiated further to obtain
the shearing force and the bending moment at any point £.

DERIVATION OF FUNDAMENTAL SOLUTION

Linear Variation

The fundamental solution, w*, of the differential equation
governing the beams of variable depth can be derived as fol-
lows: For instance, if the depth of a rectangular beam varies

linearly
h(x) = h, (1 + -IZE)

where h, = depth at the origin; and b = constant such that the
beam becomes prismatic when b = 0. Assuming that the width
of the beam is constant, (6) becomes

d? bx\’ d*w
;i—;l:EIO (l +z> dxz] +3x—§&€=0 (12)

where I, = moment of inertia at x = 0. The integration of (12)
yields

3
d bx\ d*w* C x<&
dx [EIO <1 L) dx? ] 4 {‘(1 - C) x>§

where 0 < C, < 1
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FIG. 2. Function V*

where C, is a constant. The function V* is plotted as shown
in Fig. 2, and it is clear from the figure that the slope of V*
is zero everywhere except at x = £ where it becomes —, as
it should according to (12). For symmetry let us choose C, =
1/2. Therefore

V* = —-;- sgn(x — &) (13a)

where

me—a={f‘j:§
Integrate V* to get M*:

M* = —sgn(x — &) (x_;_ﬁ (13b)
Integrate M* with respect to x, between £ and x to get 9*:

T M*dx L — &

o* = fe m = st~ O I +( bx)za T bB)

(13¢)

Similarly, integrate 8* with respect to x, between £ and x to
get w*:

. S 1, 1
wh=—sent — O e | O\ L e T LT b

2 L+bx]

» 8 T+ bt

(13d)

It should be noted that w* represents the deflection at point x
due to a unit concentrated force applied at £.

Parabolic Variation

If the depth of beam varies parabolically, i.e.

b 2
h(x) = ho (1 + %)

and the governing equation becomes

2 2\3 2
%[Elo<l+%-) ‘27‘:] +f)=0, O<x<L (14)

Following the same procedure, we get

or = — _ L? —2LXL + bxf)  3bxk
= =580 =~ O 1o | @ + by @ + b2
2L% + 3bE?
+ Croe) 3VbLE(Y: 'Yz)] (15a)

where vy, = tan_’(x\/l_v) and vy, = tan“(g\/l;). And
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w* = —sgn(x — §)

1 [@—n 2L - )

16bEl, | (L* + bx?)  (L* + bE?)
_ L+ 3bLxf)yi — vo) | 3BLGE’ — &)
Vb (L + bE) (15b)

Similarly, fundamental solutions can be derived for other
types of stiffness variations.

NUMERICAL EXAMPLES
Example 1

Consider the following problem of a single span nonpris-
matic beam AB of unit length as shown in Fig. 3. The depth
of the beam varies parabolically from depth 2 = 1.0 units at
the left end to A = 2.0 units at the right end (i.e., b = 1) and
has a unit width. The beam is supported on a translational
spring, with the spring stiffness K, = 10 at the left end, fixed
at the right end and carrying uniformly distributed load, g =
1.0.

This problem has been solved using finite-element-method
(FEM)-based STRUDL (1977) software, by dividing the beam
into 10 and 20 prismatic elements where I is based on the
center of each element. STRUDL results for bending moment,
deflection, rotation, and support reactions are given in Table
1, where the first column represents the results obtained by
BIM and the last two columns show the results obtained by
STRUDL.

Example 2

Consider the following problem of a three-span bridge
girder of variable depth as shown in Fig. 4. The flexural
rigidity of the girder EI varies parabolically from depth & =
2.5 units at both ends and midspan to A = 7.5 units at the
intermediate supports. In continuous beams, the procedure is
basically the same as for single span beams. The extra thing
we have to keep in mind is the connectivity between the spans.
The continuity and equilibrium conditions at the intermediate
support are

M,=-M, and 6,=80,

A e g1 B
N\
‘ N
N\
N\
K: mg

k L=1 _J'

FIG. 3. Beam with Parabolically Varying Depth, Elastically Re-
strained at One End and Fixed at Other End

TABLE 1. Deflection, Rotation, Bending Moment, and Support
Reactions

BIM STRUDL
1 Nonprismatic 10 Prismatic 20 Prismatic
Variable region elements elements

4 & 3 “)

A 0.1579 0.1435 0.1579
R, 1.5792 1.435 1.5792
6, 1.2643 1.1375 1.2622
M, 4.6067 4133 4.5346
Ry 34214 3.0781 3.4033




FIG. 4. Continuous Bridge Girder with Parabolically Varying
Depth

TABLE 2. Bending Moments, Slopes, and Support Reactions

BIM STRUDL
3 20 40 80
Slope- |Nonprismatic| Prismatic | Prismatic | Prismatic
Variable|Deflection| regions |elements®jelements*®{elements*®
4] @ (3) 4) (5 6)
M, 594.0 593.75 589.13 592.56 593.44
M, 453.0 452.81 450.39 452.18 452.64
8, 289.20 290.25 288.56 289.20 290.0
6, 423.84 423.92 426.12 425.58 424.66
0; 614.89 615.50 618.35 617.85 616.39
0, 772.76 775.54 776.80 776.24 775.51
R, 1.50 1.51 1.64 1.54 1.52
R, 72.85 72.45 72.29 72.41 72.44
R, 46.15 46.62 46.58 46.61 46.62
R, —-125 —12.58 —12.5 -12.6 —12.57

*Total number of elements for 3 spans.

where M,, 0, are the moment and rotation before the support,
and M,, 6, are the moment and rotation after the support.

An analytical solution using slope deflection and Portland
Cement Association tables for this problem is available in Ti-
moshenko and Young (1965). This problem has also been
solved using FEM-based software STRUDL (1977) by divid-
ing the beam into 20, 40, and 80 elements, and the results of
bending moments, slopes, and support reactions are given in
Table 2. In that table, the first column represents the analytical
results, the second shows the results obtained by BIM, and the
last three show the results obtained by STRUDL.

CONCLUSIONS

In this paper, a boundary integral solution of continuous
nonprismatic beams has been presented. The method involves
no approximation. It is well known that the only source of
approximation in the boundary integral method is the approx-
imate modeling of the boundary. The boundary in the present
case is simply the ends of each span (beam supports) over
which the boundary conditions are satisfied exactly. In addition
to the accuracy, the method has more advantages over other
numerical methods in terms of the number of equations in-
volved in the solution. Although the method presented is for
rectangular beams with linear and parabolic depth variations,

it can be applied easily to other cases by modifying the ex-
pression for I and following the same procedure.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

b = variation in depth of beam;
C, = arbitrary constant;
El(x) = flexural rigidity;
h(x) = depth of beam;
ho = depth of beam at origin of coordinate system,;
I, = moment of inertia at origin of coordinate system;
K, = rotational spring constant;
K, = translational spring constant;
L = length of beam;
M(x) = bending moment;
M, = bending moment at support i;
g(x) = distributed load;
R; = reaction at support i;
V(x) = shear force;
w(x) = transverse deflection;
w; = deflection at support i;
w* = weighting function;
8 = Dirac delta function;
0(x) = slope of beam;
0, = slope at support i; and
£ = any point in beam.
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