FINITE-ELEMENT ANALYSIS OF TWO-DIMENSIONAL PROBLEMS 221

A third interpretation of Eq. (4.47) is provided by the groundwater (seepage)
flow problem. In this case, u denotes the piezometric head (measured from the
bottom of an aquifer) and f is the charge (pumping is negative). The flow
velocities are given by
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where a,, and a,, are the coefficients of permeability. (In the present example, we
have a); = a), = 1.)

The last example of the problem considered here is one of a 2-inch-square
(elastic) membrane fixed on the boundary and subjected to uniformly distributed
load of unit intensity. In this case, u denotes the transverse deflection of the
membrane. |

The next two examples are concerned with the irrotational flow of an ideal
fluid (i.e., a nonviscous fluid). Examples of physical problems that can be
approximated by such flows are provided by flow around bodies such as weirs,
airfoils, buildings, and so on, and by flow of water through the earth and dams.
The equation governing these flows is a special case of Eq. (4.1), namely, the
Laplace equation. Therefore, one can use the finite-element equations developed
earlier to model these physical problems. Due to the nonrectangular boundaries
involved in the two examples to be discussed, only triangular-element meshes
were employed. It is possible to use meshes consisting of both triangular and
rectangular elements to obtain the same discretization accuracy. However, in the
interest of brevity, we will not use meshes with two different kinds of elements.
We will return to these examples in Sec. 4.8 on the computer implementation of
the finite-element method.

Example 4.2 (Confined flow about a circular cylinder) The irrotational flow of
an ideal fluid (i.e., a nonviscous fluid) about a circular cylinder (placed with its
axis perpendicular to the plane of the flow between two long horizontal walls; see
Fig. 4.11a) is to be analyzed using the finite-element method. The equation
governing the flow is given by
-v2u=0 inQ (4.72)
where u can be one of two functions: (1) u is the stream function or (2) u is the
velocity potential. If u is the stream function v, the velocity components of the
flow field are given by
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If u is the velocity potential ¢, the velocity components can be computed from
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In either case, the velocity field is not affected by a constant term in the solu-
tion u.
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Figure 4.11 Domain and boundary conditions for the stream function and velocity potential formula-
tions of irrotational flow about a cylinder. (a) Domain of the flow about a circular cylinder. (b)
Stream function formulation. (c) Velocity potential formulation.

Stream function formulation The boundary conditions on the stream function
¥ can be determined as follows (see Fig. 4.115). Streamlines have the property
that flow perpendicular to a streamline is zero. Therefore, the fixed walls
correspond to streamlines. Due to the biaxial symmetry about the horizontal and
vertical centerlines, only a quadrant (say, ABCDE) of the domain need be used in
the analysis. The fact that the velocity component perpendicular to the horizontal
line of symmetry is equal to zero allows us to use that line as a streamline. Since
the velocity field depends on the relative difference of two streamlines, we take
the value of the streamline that coincides with the axis of symmetry of the
cylinder to be zero (Y, = 0) and then determine the value of ¥ on the upper wall
from the condition

where ¥}, is the velocity of the fluid parallel to the streamline. Since ¥}, is given
only at the inlet, we determine the value of the streamline at point E by
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