King Fahd University of Petroleum & Minerals DEPARTMENT OF CIVIL ENGINEERING

CE 201 STATICS (092)

Second Major Examination

Tuesday 11/5/2010 7:00 p.m. → 9:00 p.m.

Name : Solved by the instructors who put the problems (Coordinated course) I.D. # :....

SECTION:

Question	Points	Grade
1	10	
2	18	
3	25	
4	22	
5	25	
TOTAL	100	

Good luck !

Question #1 (10 points)

In the pipe assembly shown below:-

- (2 points) A) Express the force at point (B) in Cartesian vector form.
- (6 points) B) Determine the magnitude of the moment of the force at (B) about axis (AC).
- (2 points) C) Express the moment in part (B) above in Cartesian vector form.

Replace the loads shown in the figure below by an *equivalent force and couple moment* acting at point O.

Question # 3 (25 points)

The uniform rod (AB) has a mass of (5) kg, and is supported by a ball-and-socket at (A), a rope (BC), and is resting on a smooth wall at (B). Determine the support reactions at A, B & C.

The unknowns are	B for
An, Ay, Az, By and TBC	the FBD
W = 5 + 9.81 = 49.1N By TRC	
$\Sigma F_{x} = 0$, $A_{x} = T_{Bc}$	
$\Sigma Fy = 0$, $Ay = -By \textcircled{2}_{2m}$	2 m
$ZF_{2} = 0$, $A_{2} = W = 49.1 N$	1m
DEMx = 0 (moment about x axis) for	Az
$-B_{g}(2) + A_{2}(2) - 49.1(\frac{0+2}{2}) = 0$	
Since Az = 49.1N 2 By =	24.6 N
2Fy = 0, Ay = - By = - 24.6 N =	24.6 N K
€ EMy = 0, - Az (1) + 49.1 (1+3) - T	Bc(2) = 0
Since Az = 49.1 N 2 : TBC -	= 24.6 N
EFx = 0, 1 Az = TBC = 24.6 N)

To check the results:

$$\Xi M_2 = 0$$
, By $(3) - Ax(2) + Ay(1) = 0$
 $\therefore 24.6(3) - 24.6(2) + (-24.6)(1) = 0$
The solution is correct

Usedar Analysis
Cordinates
$$A(1,2,0)$$
, $B(3,0,2)$ and $D(2,1,1)$
(3) marks for FBD shown in the scalar analysis
Forces are shown in the figure:
(1) By \hat{n} , $T_{BC}(-\hat{j})$, $W(-\hat{k})$ $W=S(q,s)$
 $A\chi^2$, Ay^2_1 and $A_2\hat{k}$
 $\chi_{quatrons}$ of Force equilibrium
(2) $A\chi = T_{BC}$
(3) $F_{AB} = 2\hat{n} - 2\hat{j} + 2\hat{k}$, (0) $F_{AD} = \hat{n} - \hat{j} + \hat{k}$
 $T_{aking mements}$ of all forces about A :
 $W = \hat{k}$
 $\chi = -\hat{k}y$
 $\chi = -\hat{k}y = -\hat{k}y$
 $\chi = -\hat{k}y = -\hat{k}y + \hat{k}$, $\hat{k} = \hat{k} - \hat{j} + \hat{k}$
 $T_{aking mements}$ of all forces about A :
 $W(\hat{k}) = \hat{k} + \hat{k})$
 $\hat{k} = \hat{k} + \hat{k}$

Question #4 (22 points)

Question #5 (25 points)

For the frame shown below, determine the fixed support reaction at (E) and the smooth surface reaction at A. Note that the pin attached to member (BD) passes through a smooth slot at (D).

Problem # 5 2/2 For Member CBA CX 400 N 2 900 N A Mc=0; +900 *03 - 400 ×0.4 -N, *0.6=0 = $N_{A} = 183.33N$ (2) + \$ ZIFy=0; 183.33 - 900 + Cy=0 => G=716.67 1) 2 Fx =0; -400 - 4=0 => (C= -400 N Check 1 GIZMA = 0, -900+013+400 × 014+716.67-400 × 0.8=0 -270 +160 +130 -320 04 OK For Member CD.F 2 G+ Z7M==0; -500 × 0.5 + 400 ×0.8 + 716.67×0.6 + ME= 716.67N 36.870 => ME = -500 Nom @ 5 43 500 N +1 Z Fy=0; -716.67+300+ Ey=0 => Ey=416.67N @ T) ZFX= 0; -400 + 400 - Ex=0 => Ex=0 (2) Can also be obtained From ZFX for the entire Risid