King Fahd University of Petroleum \& Minerals DEPARTMENT OF CIVIL ENGINEERING

 CE 201 STATICS

 CE 201 STATICS

 First Major Exam

 First Major Exam}

Tue. 3/Nov./09
8:00 p.m. \rightarrow 10:00 p.m.

Student Name : Solved by the instructors who put the problems (Coordinated course)
Student I.D. \# :
SECTION:

Question	Grade	Score
1	25	
2	25	
3	25	
4	$\mathbf{1 0 0}$	
TOTAL		

Good luck!

Question \# 1 (25\%)
For the figure shown below:
8\% a) Express forces F_{1} and F_{2} in Cartesian vector forms.
$8 \% \quad$ b) Use the dot product to determine the angle between $\left(F_{1}\right)$ and $\left(F_{2}\right)$.
$9 \% \quad$ c) Use the dot product to determine the projection of F_{1} along the line of action of F_{3}.

Use the following information for this problem:

$$
\begin{aligned}
& \left|\widetilde{F}_{1}\right|=200 \mathrm{~N} \\
& \left|\widetilde{F}_{2}\right|=100 \mathrm{~N} \\
& \mathrm{~F}_{3}=\{80 \tilde{\mathrm{i}}+60 \tilde{\mathrm{j}}-40 \widetilde{\mathbf{k}}\} \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
& \text {) For } F_{1} \\
& F_{1}^{\prime} \text { (on } x-y \text { plane) } \\
& =200 \cos 60=100 \mathrm{~N} \\
& \Rightarrow F_{1 x}=100 \cos 30 \quad(\text { tex }) \\
& =86.60 \mathrm{~N} \\
& F_{1 y}=100 \sin 30 \text { (-re y-axis) } \\
& =50 \mathrm{~N} \text { (-re y-axis) } \\
& F_{1 z}=200 \sin 60 \\
& =173.21 \mathrm{~N}
\end{aligned}
$$

(4) $\vec{F}_{1}=\{86.60 \hat{\imath}-50 \hat{\jmath}+173.21 \hat{k}\} N$

For F_{2}

$$
\begin{aligned}
& F_{2} \\
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \Rightarrow \cos ^{2} \beta=1-\cos ^{2} \alpha-\cos ^{2} \gamma \\
& \cos ^{2} \beta=1-\cos ^{2} 135-\cos ^{2} 60
\end{aligned} \quad \Rightarrow \beta=60^{\circ}
$$

$$
\bar{F}_{2}=100 \mathrm{~N}(\cos 135 \hat{k}+\cos 60 \hat{\jmath}+\cos 60 \hat{k})
$$

(4) $=\{-70.71 \hat{\imath}+50 \hat{\jmath}+50 \hat{k}\} N$
b)

$$
\begin{aligned}
\cos \theta & =\frac{F_{1} \cdot \bar{F}_{2}}{F_{1} * F_{2}} \\
& =\frac{86.60 *-70.71-50 * 50+173.21 * 50}{200 * 100} \\
\cos \theta & =\frac{37.014}{20000} \Rightarrow \theta=89.89^{\circ}
\end{aligned}
$$

c) Projection of \bar{F}_{1} along the Liniod Actinn of \bar{F}_{3}

$$
\begin{aligned}
& F_{\text {adoy } F_{3}}=\bar{F}_{1} \cdot \bar{u}_{F_{3}} \\
& \left|F_{3}\right|=107.70 \\
& \bar{u}_{F_{3}}=\frac{80 \hat{\imath}+60 \hat{\jmath}-40 \hat{k}}{\sqrt{(80)^{2}+(60)^{2}+(-40)^{2}}}=\{0.742 \hat{\imath}+0.558 \hat{\jmath}-0.3 \hat{0} \hat{k}\}
\end{aligned}
$$

$$
\begin{aligned}
& =-27.80 \mathrm{~N}
\end{aligned}
$$

(1)

Problem－2（25 points）
Equilibrium has been reached in the cables，pulley，and spring system as shown in the figure below．If the mass m_{D} ，attached to D is 20 kg ，determine；
（a）The extension in spring $A D$ ．
（b）The force in cable $A C, F_{\text {Ac }}$ ．
（c）The distance between A and B before mass，m_{D} is added to the system．
Note：Draw appropriate free－body－diagrams $(\boldsymbol{F B D})$ to illustrate and justify your answers．

Solution：

\Leftrightarrow Extension in sparing AD；
$\geq F_{y}+1=0 ;$

$$
F_{A}-W_{\Delta}=0 ; \quad F_{A B}=196.21
$$

（2）

（6）Fromincoble $A C$ ，
From FBD－II：
$\geq \stackrel{\rightharpoonup}{\vec{x}}=0$ ；
（3）
$-F_{A B}+\frac{1}{\sqrt{2}} F_{A B}+\frac{F}{5} F_{A C}=0$ ，

$$
\begin{aligned}
& \sum \sqrt{y+}+1=0 \text {; } \\
& \text { 在虎一要会 }=0 \text {, } \\
& F_{x \rightarrow 2}=\frac{3 \sqrt{2}}{5} F_{x}
\end{aligned}
$$

Substituting for $F_{B B}$ in $E_{q}-I$;

$$
\begin{gathered}
-196.2+\frac{1}{\sqrt{2}}\left(\frac{3 \sqrt{2}}{5}\right) \sqrt{A C}+\frac{4}{5} \sqrt{A_{C}}=0 \\
\quad F_{A C}=140.143 \mathrm{~N} \\
3 \pi
\end{gathered}
$$

(c) The distance between A and B before m_{D} is added to the system;
We have, $F_{A B}=\frac{3 \sqrt{2}}{5} \sqrt{A_{C}}=\frac{3 \sqrt{2}}{5}(140.143)$

$$
\begin{equation*}
=118.915 \mathrm{~N} \tag{3}
\end{equation*}
$$

But $F_{A B}=F_{A B}^{\prime} \Delta_{A B}$

$$
\begin{aligned}
\therefore \Delta_{A B}=\frac{F_{A B}}{K_{H B}} & =118.915 \mathrm{~N} / 200 \mathrm{~N} / \mathrm{m} \\
& =0.595 \mathrm{~m} \leftrightarrows
\end{aligned}
$$

and $\Delta_{A B}=L_{A B}-L_{A B}^{\prime}$
where $L_{A B}=\sqrt{4^{2}+4^{2}}=5.651 \mathrm{~m}$
and $L_{A B}^{\prime}=$ distance between A and B be fore Ms is added to the system.

$$
\begin{aligned}
\therefore \quad L_{A B}^{\prime} & =L_{A B}-\Delta_{A B} \\
& =5.657-0.595 \\
& =5.062 \mathrm{~m}
\end{aligned}
$$

Question \# 3 (25\%)
A 200 kg plate is held by three cables $(\mathrm{AB}, \mathrm{AC} \& \mathrm{AD})$ as shown below:
21% A) Set the governing equations for the determination of tensile forces in the three cables.

4\% B) Find the tension in these three cables.
PART A 21

PART B 4

$$
\begin{align*}
& 0.14 T_{A B}-0.327 T_{A C}-0.14 T_{A D}=0 \\
& -0.327 T_{A B}-0.14 T_{A C}+0.327 T_{A D}=0
\end{align*}
$$

Mutiply -(1) by 2.336

$$
\begin{equation*}
0.327 T_{A B}-0.764 T_{A C}=0.327 T_{A D}=0 \tag{1}
\end{equation*}
$$

Ald - (1) and-2 to get

$$
\begin{array}{r}
-0.904 T_{A C}=0 \\
\cdots T_{A C}=0 \quad I
\end{array}
$$

from (1)

$$
T_{A B}=T_{A D}
$$

Substitate in (3) to get

$$
T_{A B}=T_{A D}=1049.7 \simeq 1050 \mathrm{~N}
$$

2

Problem \#4 (25 points)
A force \mathbf{P} of magnitude 500 N is acting along a line $A B$ as shown in Fig. below:
i) Express the force \mathbf{P} in Cartesian Vector Form
[10 Points]
ii) Determine the moment of the force \mathbf{P} about point Q

$$
\begin{aligned}
& \vec{\gamma}_{A B}=\{-18 \vec{i}+9 \vec{j}+6 \vec{k}\} m \\
& \left|\vec{\gamma}_{A B}\right|=\sqrt{(-18)^{2}+(9)^{2}+(6)^{2}} \\
& \vec{\gamma}_{Q A}=\{-12 \vec{J}+6 \vec{k}\} m \\
& |\vec{P}|=500 \mathrm{~N}
\end{aligned}
$$

(i)

$$
\begin{aligned}
\vec{P} & =|\vec{p}| \frac{\vec{\gamma}_{A B}}{\left|\vec{r}_{A B}\right|} \quad(18,15,-6) \mathrm{m} \\
& =\frac{500}{21}\{-18 \vec{i}+9 \overrightarrow{\}}+6 \vec{k}\}=\{-428.57 \vec{i}+214.28 \vec{j}+142.85 \vec{k}\}_{\mathrm{N}}
\end{aligned}
$$

Ans
(ii)

$$
\begin{aligned}
\vec{M}_{Q}= & \vec{\gamma}_{Q A} \times \vec{p}=\{-12 \vec{j}+6 \vec{k}\} \times\{-428.57 \vec{i}+214.2 \vec{j}+142.85 \vec{k}\} \\
= & (-12)(-428.57)(-\vec{k})+(-12)(142.85)(\vec{i}) \\
& +(6)(-428.57)(\vec{j})+(6)(214.28)(-\vec{i}) \\
= & \{-3000 \vec{i}-2571 \vec{j}-5143 \vec{k}\} N-m \\
\left|\overrightarrow{M a}_{Q}\right|= & \sqrt{(-3000)^{2}+(-2571)^{2}+(-5143)^{2}}=\frac{6485 N-m}{\text { Ans }}
\end{aligned}
$$

Ans

