

Aggregate Specific Gravities

Aggregate	Bulk Sp. Gravity	Apparent Sp. Gravity
#1 Stone	2. 703	2. 785
1/2"	2. 689	2. 776
3/8"	2. 723	2. 797
Manuf. Sand	2. 694	2. 744
Screen Sand	2. 79	2. 731

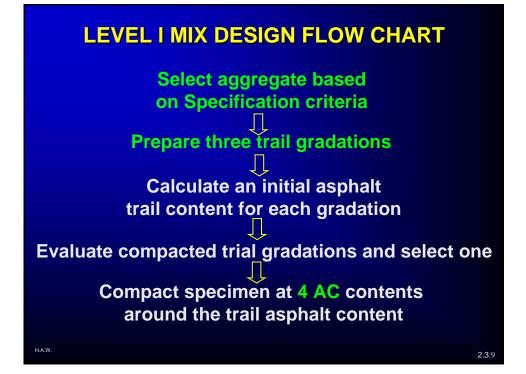
Coarse Aggregate Angularity

Aggregate	1 + Fractured Faces	Criterion	2 + Fractured Faces	Criterion
#1 Stone	95 %	95 %	91 %	90 %
1/2"	97 %	95 %	94 %	90 %
3/8"	99 %	95 %	95 %	90 %

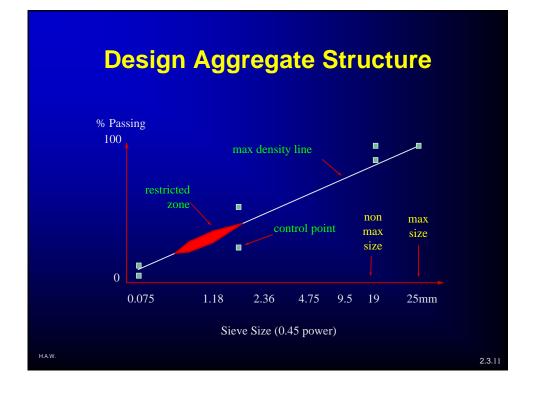
.A.W.

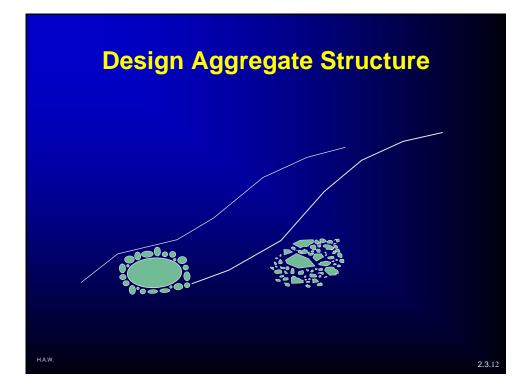
2.3.5

Fine Aggregate Angularity


Aggregate	% Air Voids (Loose)	Criterion
Manufactured Sand	62 %	45 % min
Screen Sand	36 %	

Thin (Flat) And Elongated Particles


Aggregate	% Thin / Elongate	Criterion
#1 Stone	0 %	
1/2"Chip	0 %	10 % max
3/8"Chip	0 %	


H.A.W.

	Sand Equivalent	Criterion
Aggregate		
Anufactured Sand	47	45 min
creen Sand	70	

SIVE SIZE	PERCENT PASSING
1 INCH	100
³ ⁄ ₄ INCH	98 -100
½ INCH	80 - 91
3/8 INCH	77-87
No. 4	58-71
No. 8	45-56
No. 30	24-35
No. 100	9-18
No. 200	4-6

Table A-1. 37.5 mm (11/2 in.) NOMINAL MAXIMUM SIZE

MINIMUM	MAXIMUM
0	6
15	-
90	100
100	-
	0 15 90

H.A.W.

 Table A-2.
 25.4 mm (1 in.) NOMINAL MAXIMUM SIZE

SIEVE SIZE	CONTROL POINT (PERCENT PASSING)		
SIEVESIZE	MINIMUM	MAXIMUM	
75μm (No. 200)	1	7	
2 .36 mm (No.8)	19	-	
Nominal maximum (25.4 mm) (1 in.)	90	100	
Maximum (37.5 mm) (1 1/2 in.)	100	-	

Table A-3.	19.0 mm (3/4 in.)	NOMINAL	MAXIMUM SIZE
------------	-------------------	---------	--------------

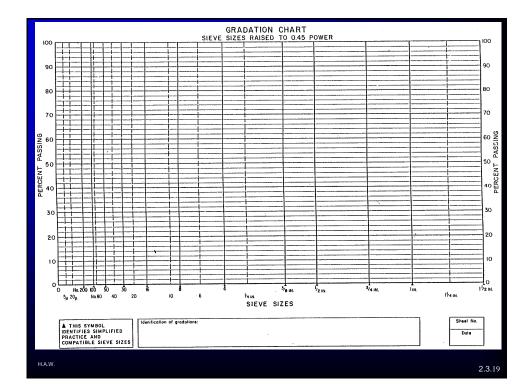
SIEVE SIZE	CONTROL POINT (PERCENT PASSING)		
SIEVE SIZE	MINIMUM	MAXIMUM	
75µm (No. 200)	2	8	
2 .36 mm (No.8)	23	-	
Nominal maximum (19.0 mm) (3/4 in)	90	100	
Maximum (25.4 mm) (1 in.)	100	-	

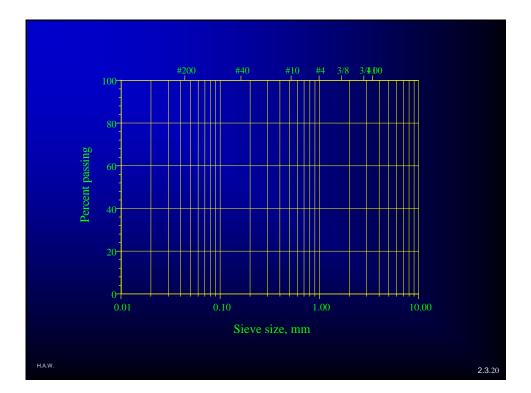
H.A.W.

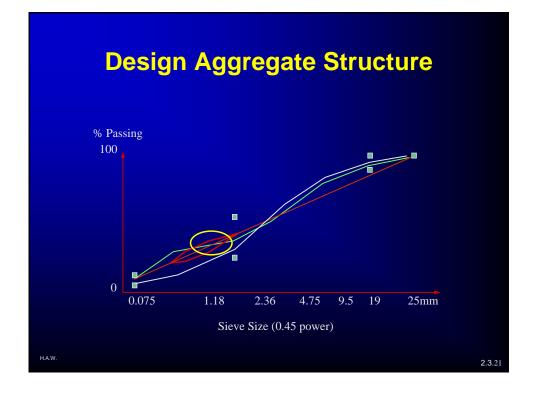
2.3.15

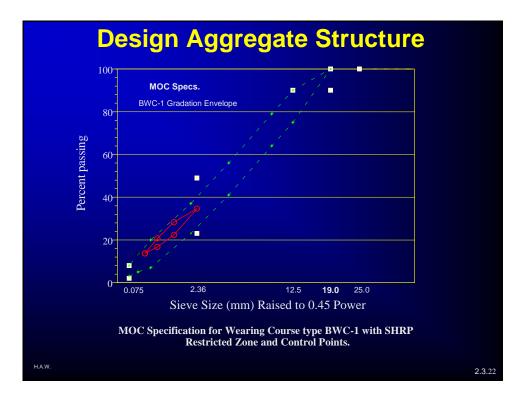
Table A-4. 12.5 mm (1/2 in.) NOMINAL MAXIMUM SIZE

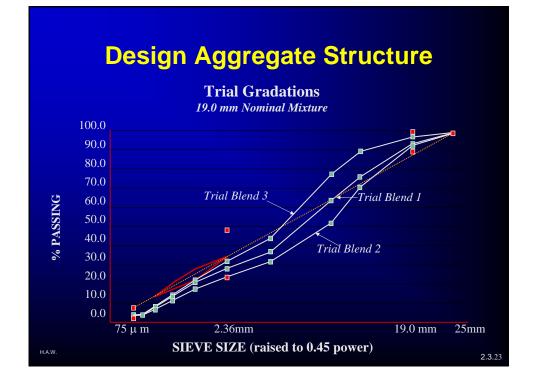
CONTROL POINT (PERCENT PASSING)		
MINIMUM	MAXIMUM	
2	10	
28	-	
90	100	
100	-	
	MINIMUM 2 28 90	

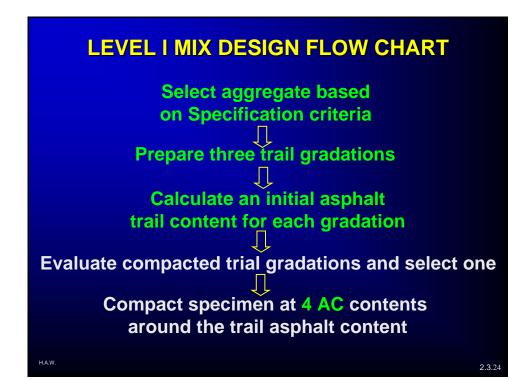

	CONTROL POINT (PERCENT PASSING)	
SIEVE SIZE	MINIMUM	MAXIMUM
75μm (No. 200)	2	10
2 .36 mm (No.8)	32	-
Nominal maximum (9.5 mm) (3/8 in)	90	100
Maximum (12.5 mm) (3/8 in.)	100	_

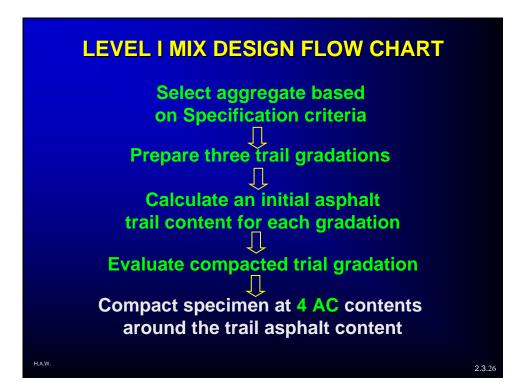

H.A.W

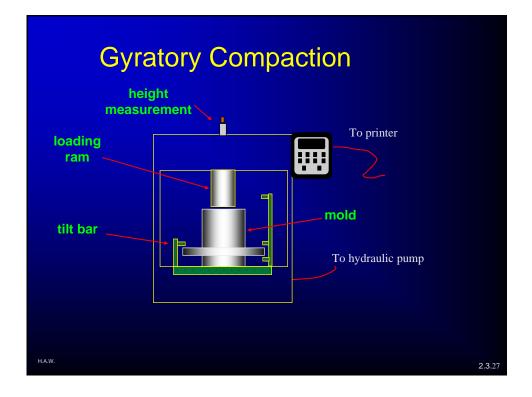

 Table A-6. Boundaries of Aggregate Restricted Zone

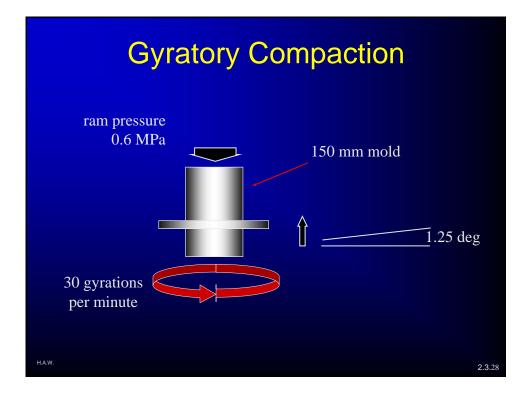

Sieve Size Within	Minimum & Maximum Boundaries of Sieve Size for Nominal Max. Aggregate Size. (Min. / Max. % Passing)								
Restricted Zone	1 ½ in	1 in	3⁄4 in	¹⁄₂ in	3/8 in				
4.75mm (No. 4)	34.7 / 34.7	39.5 / 39.5	-	-	-				
2.36mm (No.8)	23.3 / 27.3	26.8 / 30.8	34.6 / 34.6	39.1 / 39.1	47.2 / 47.2				
1.18mm (No.16)	15.5 / 21.5	18.1 / 24.1	22.3 / 28.3	25.6 / 31.6	31.6 / 37.6				
0.60mm (No. 30)	11.7 / 15.7	13.6 / 17.6	16.7 / 20.7	19.1 / 23.1	23.5 / 27.5				
0.30mm (No. 50)	10.0 / 10.0	11.4 / 11.4	13.7 / 13.7	15.5 / 15.5	18.7 / 18.7				

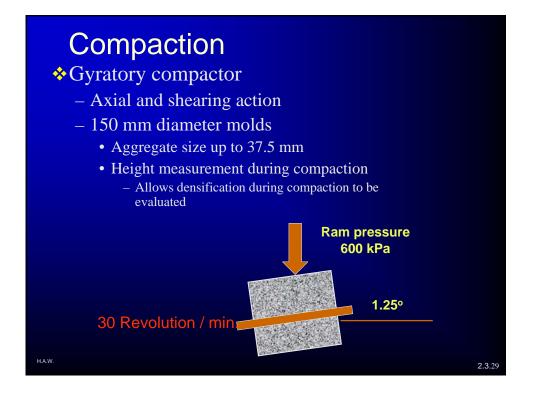

.W.

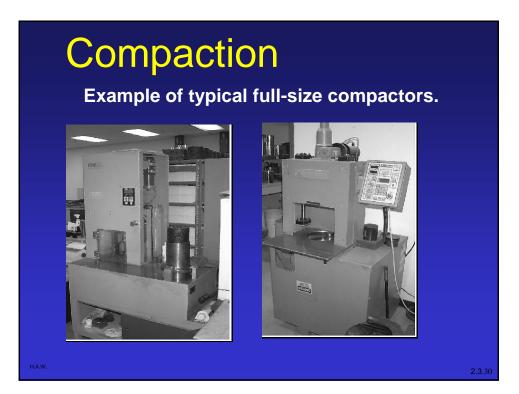


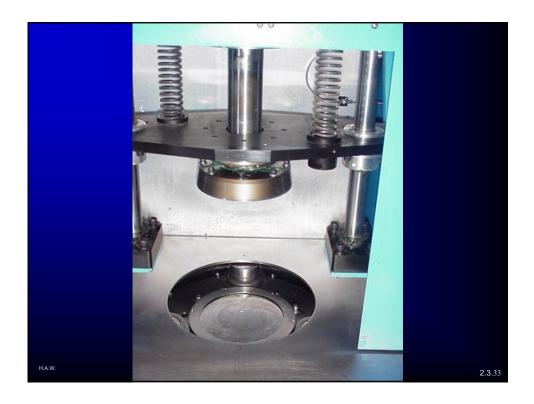


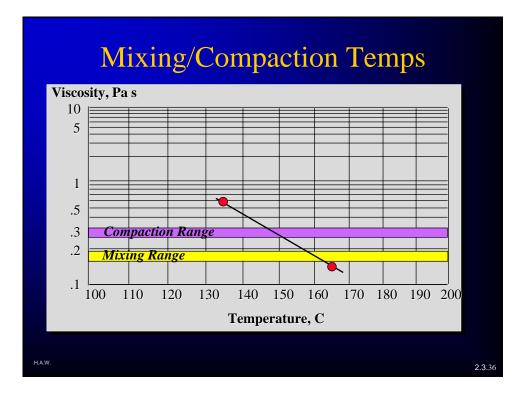




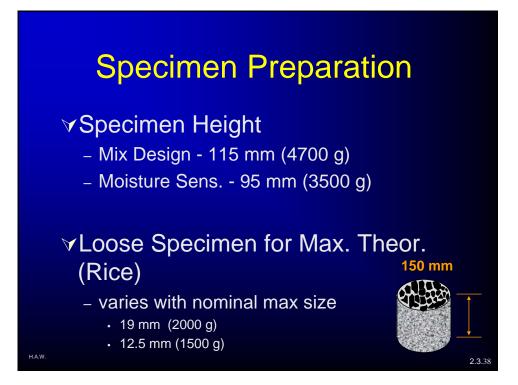




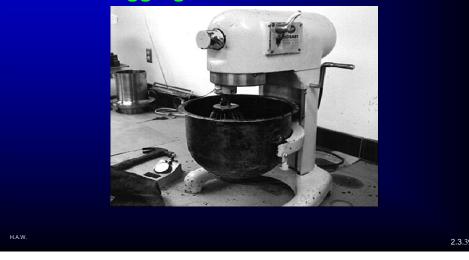







- 1. Height Measurement (standard height s
- 2. No. of Revolutions / Minute
- 3. Ram Pressure (load-cell or proving ring
- 4. Gyration angle (digital dial gage)

Mixing


Place pre-heated aggregate in bowl and add hot asphalt

Mixing

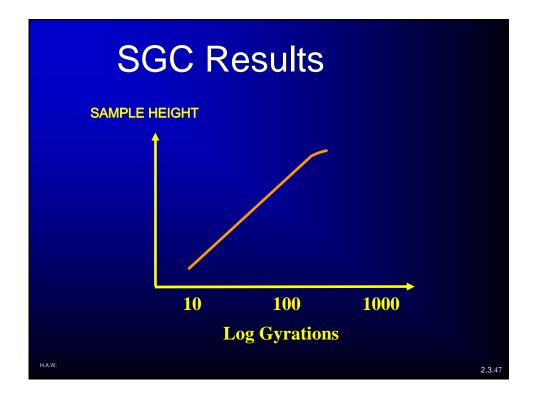
Place bowl on mixer and mix until aggregate is well-coated

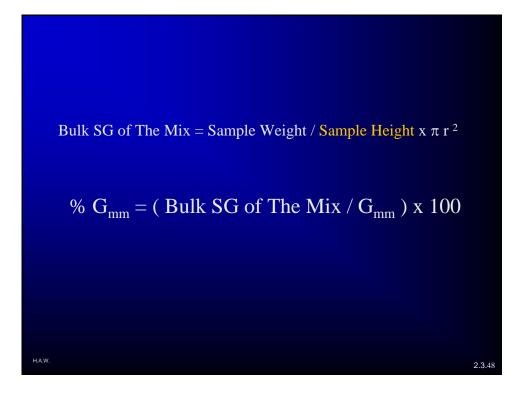
Short Term Aging Important

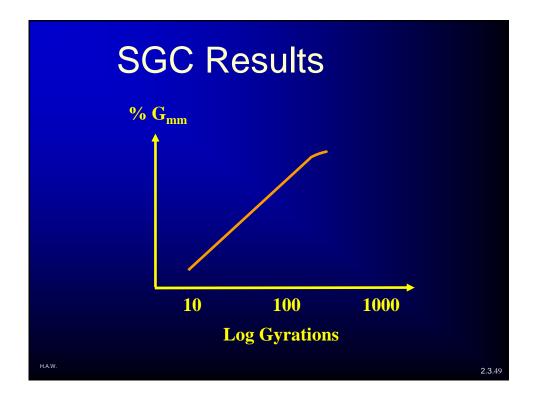
- Allows time for aggregate to absorb asphalt
- Helps minimize variability in volumetric calculations
 - Most terms dependent upon volumes which change with changes in the amount (volume) of absorbed asphalt

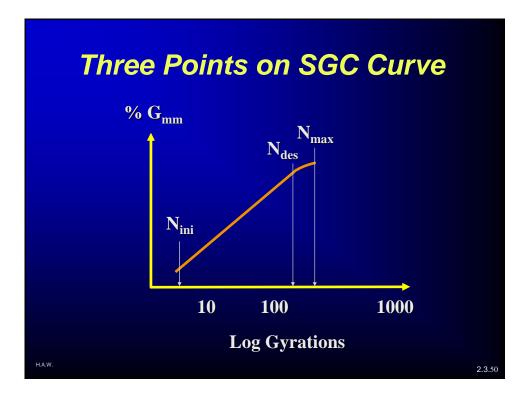
Compaction

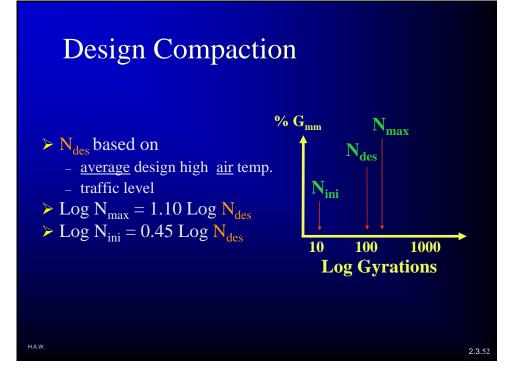
Place funnel on top of mold and place mix in mold. Take care not to allow the mix to segregate.

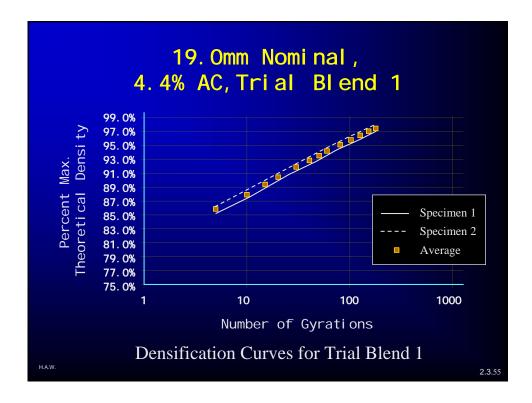


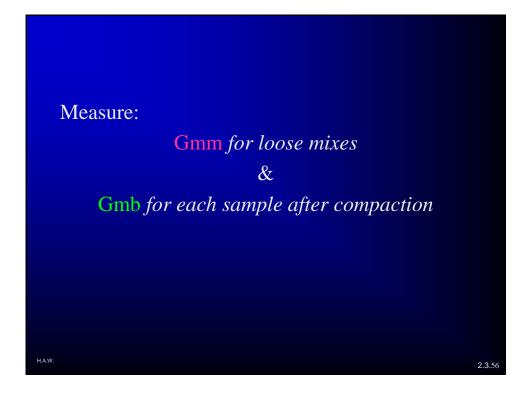

Compaction


Once compaction is finished, extrude sample from mold.



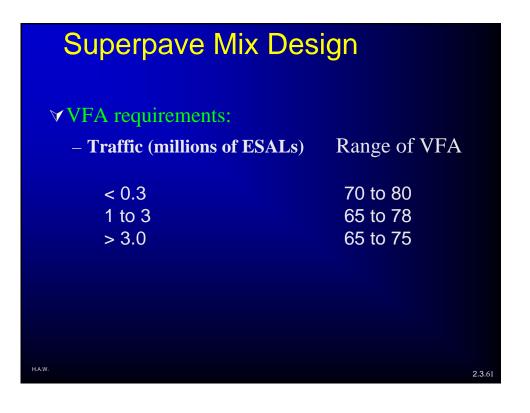





Design ESAL ⁽¹⁾ (Millions)	Gyratory Compaction Parameters			Typical Road Description ⁽²⁾
	N _{initial}	N _{design}	N _{max}	
< 0.3	6	50	75	Application would include roadways with very light traffic volumes such as local roads, county roads and city streets where truck traffic is prohibited or at a very minimal level
0.3 to < 3	7	75	115	Application would include many collector roads or access streets. Medium trafficked city streets and majority of county roadways would be applicable to this level.
3 to < 30	8	100	160	Application would include many two lanes, multilane and divide partially or completely controlled access roadways. Among these are medium to highly trafficked city streets, highway and some rural interstates.
> 30	9	125	205	Application includes the vast majority of the US interstate system, both rural and urban in nature. Special application such as truck weighing stations or truck climbing lane on two lane roadways would be applicable to this level.

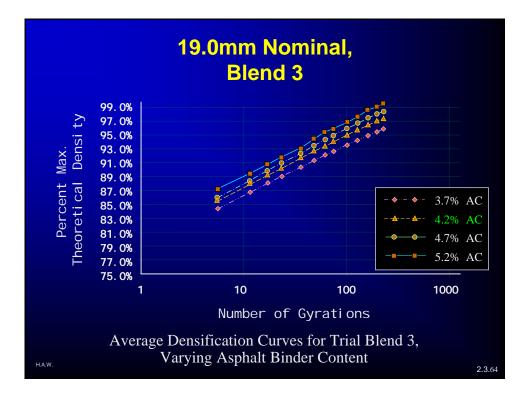
	RPAVE Compaction uirements
Compaction	Required Density
Level	(% of theoretical maximum specific Gravity)
N _{init}	< 89
N _{design}	= 96
N _{max}	< 98

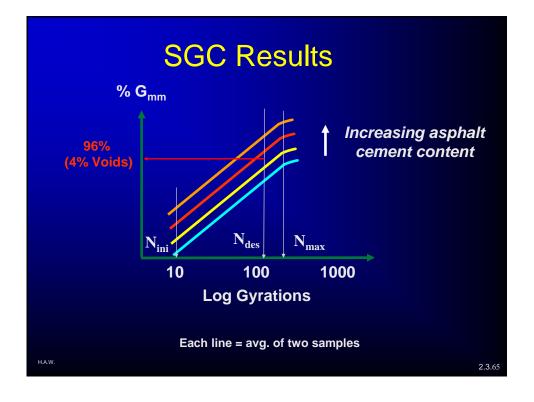
Design ESAL's		< 39%	С
(millions)	N _{ini}	N _{des}	N _{max}
<0.3	7	68	104
0.3 – 1	7	76	117
1 – 3	7	86	134
3 - 10	8	96	152
<i>10 – 30</i>	8	<u>109</u>	174
30 - 100	9	126	204
>100	9	142	233

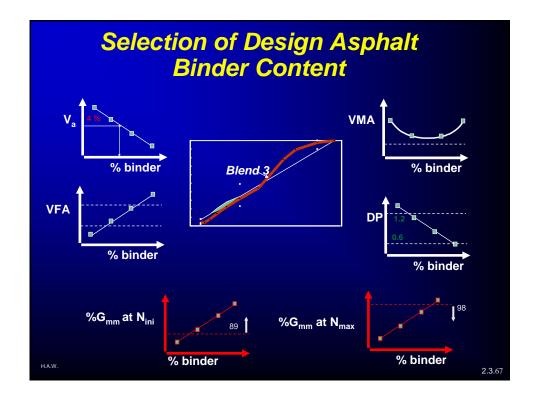


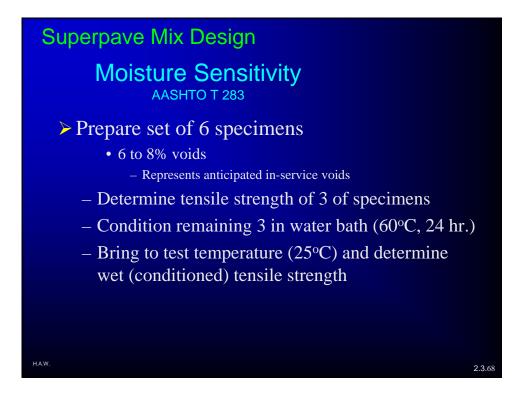
$G_{mm} =$	2.563						
# of Gyrations	G _{mb} (calc)	SPECIMEN %G _{mm}	1 %G _{mm} (corr)	G _{mb} (calc)	SPECIMEN %G _{mm}	2 %G _{mm} (corr)	Average %G _{mm} (corr)
5	2.136	83.4%	85.2%	2.154	84.1%	86.2%	85.7%
10	2192	85.5%	87.3%	2.215	86.4%	88.6%	88.0%
15	2.230	87.0%	88.9%	2.250	87.8%	90.1%	89.5%
20	2.254	88.0%	89.9%	2.275	88.7%	91.0%	90.4%
30	2.294	89.5%	91.4%	2.309	90.1%	92.4%	91.9%
40	2.315	90.3%	92.3%	2.334	91.1%	93.4%	92.8%
50	2.334	91.1%	93.0%	2.353	91.8%	94.2%	93.6%
60	2.351	91.7%	93.7%	2.369	92.4%	94.8%	94.3%
80	2.376	92.7%	94.7%	2.393	93.4%	95.8%	95.2%
100	2.392	93.3%	95.4%	2.411	94.1%	96.5%	95.9%
125	2.409	94.0%	96.0%	2.427	94.7%	97.1%	96.6%
150	2.424	94.6%	96.6%	2.440	95.2%	97.7%	97.2%
174	2.436	95.1%	97.1%	2.451	95.6%	98.1%	97.6%

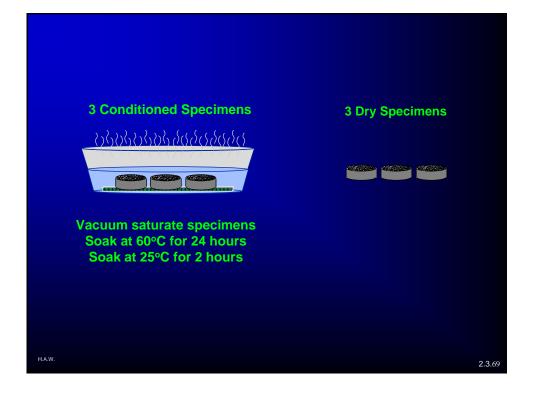
Dete				% Gmm and N _{max}	at
N _{init}	=	N ₈	=	87.1	89%
N _{design}	=	N ₁₀₉	=	96.2	96%
N _{max}	=	N ₁₇₄	=	97.6%	98%

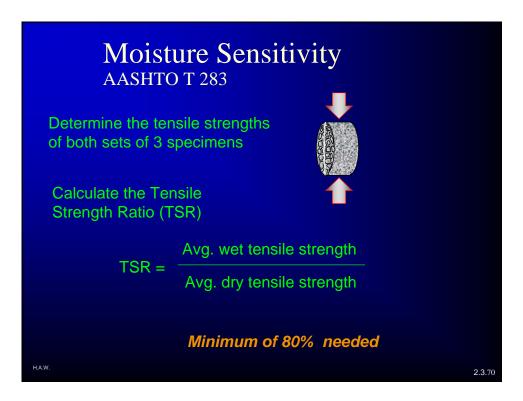

Superpave Mix Des	sign
VMA requirements: – Nominal max agg size	Min. VMA
 9.5 mm 12.5 mm 19 mm 35 mm 37.5 mm 	15 14 13 12 11
HAW.	2.3.60

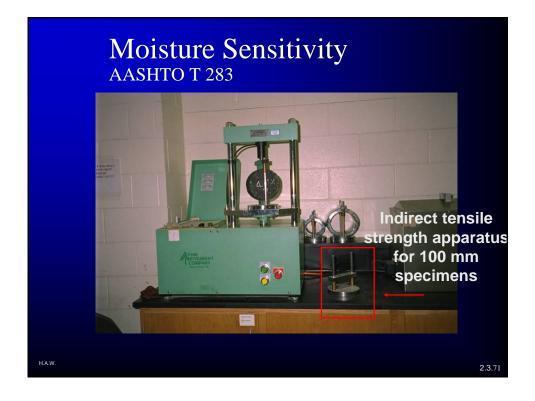


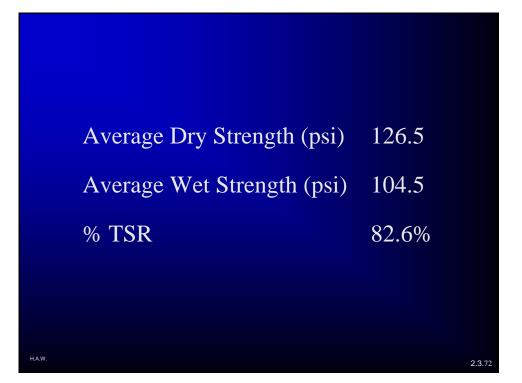


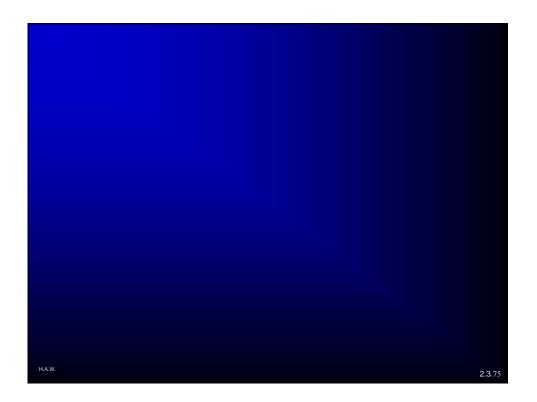











Design ESAL ⁽¹⁾ (Millions)		ory Comp arameter		Typical Road Description ⁽²⁾
	N _{initial}	N _{design}	N _{max}	Typical Koad Description
< 0.3	6	50	75	Application would include roadways with very light traffic volumes such as local roads, county roads and city streets where truck traffic is prohibited or at a very minimal level
0.3 to < 3	7	75	115	Application would include many collector roads or access streets. Medium trafficked city streets and majority of county roadways would be applicable to this level.
3 to < 30	8	100	160	Application would include many two lanes, multilane and divide partially or completely controlled access roadways. Among these are medium to highly trafficked city streets, highway and some rural interstates.
> 30	9	125	205	Application includes the vast majority of the US interstate system, both rural and urban in nature. Special application such as truck weighing stations or truck climbing lane on two lane roadways would be applicable to this level.

Design ESAL's ⁽¹⁾ (Millions)		uired De cent of G		Voids in Mineral Aggregate (VMA) (Minimum Percent) Nominal Maximum Aggregate Size (mm)					Voids Filled with Asphalt (VFA) (Minimum	Dust- to- Binder
	N _{initial}	N _{desig}	N _{max}	37.5	25.0	19.0	12.5	9.5	Percent)	Ratio
< 0.3	<u><</u> 91.5	96.0							70-80 ⁽³⁾	
0.3 to < 3	<u>< 90.5</u>		< 98.0	11 ⁽⁴⁾	12.0	13.0	14.0	15.0	65-75 ⁽²⁾	0.6-1.6
3 to <10							2110 2010	65-75 ⁽²⁾		

Design ESAL's are anticipated project traffic level expected on the design lane over a 20 years period. Regardless of the actual design life of the roadway, determine the design ESAL's for 20 years and choose appropriate N_{design} level.
 For 9.5 mm nominal maximum size mixtures the specified VFA range shall be 73% to 76% for design

(2) For 25.0 mm nominal maximum size mixtures the specified lower limit of the VFA shall be 66% for design
(3) For 25.0 mm nominal maximum size mixtures the specified lower limit of the VFA shall be 66% for design

traffic levels <3 million ESAL'S.
(4) For 37.5 mm nominal maximum size mixtures the specified lower limit of the VFA shall be 63% for all design traffic levels

