| (a) Constituents | | | | | | | | | |--|--|--|--------------------------------|---------------------------------|--|--|--|--| | | Specific | c Gravity | | | Mix Composition | | | | | Material | | Bulk | AASHTO
Method | ASTM
Method | Percent
By Weight
of Total
Mix | Percent
By Weight
of Total
Aggregate | | | | Asphalt Cement
Coarse Aggregate
Fine Aggregate
Mineral Filler | 1.030(G _b) | 2.716(G ₁)
2.689(G ₂) | T 228
T 85
T 84
T 100 | D 70
C 127
C 128
D 854 | 5.3(P _b)
47.4(P ₁)
47.3(P ₂) | 5.6(P _b)
50.0(P ₁)
50.0(P ₂) | | | | (AS
Ma: | k specific gra
TM D 2726)
ximum specif
TM D 2041) | | acted paving | mixture s
2.442 | ample, G _{mb} | | | | $$G_{Sb} = \frac{P_1 + P_2 + \ldots + P_n}{\frac{P_1}{G_1} + \frac{P_2}{G_2} + \ldots + \frac{P_n}{G_n}}$$ where, G_{sb} = bulk specific gravity for the total aggregate P₁, P₂, P_n = individual percentages by weight of aggregate G₁, G₂, G_n = individual bulk specific gravities of aggregate $$G_{sb} = \frac{\frac{50.0 + 50.0}{50.0}}{\frac{50.0}{2.716} + \frac{50.0}{2.689}} = \frac{100}{18.41 + 18.59} = 2.703$$ $$G_{sc} = \frac{P_{mm} - P_b}{\frac{P_{mm}}{G_{mm}} - \frac{P_b}{G_b}}$$ (2) where, G_{se} = effective specific gravity of aggregate G_{mm} = maximum specific gravity (ASTM D 2041) of paving mixture (no air voids) P_{mm} = percent by weight of total loose mixture = 100 P_b = asphalt content at which ASTM D 2041 test was performed, percent by total weight of mixture = specific gravity of asphalt G_{b} $$G_{sc} = \frac{100 - 5.3}{\frac{100}{2.535} - \frac{5.3}{1.030}} = \frac{94.7}{39.45 - 5.15} = 2.761$$ $$G_{mm} = \frac{P_{mm}}{\frac{P_s}{G_{se}} + \frac{P_b}{G_b}}$$ where, G_{mm} = maximum specific gravity of paving mixture (no air voids) P_{mm} = percent by weight of total loose mixture = 100 P_s = aggregate content, percent by total weight of mixture P_b = asphalt content, percent by total weight of mixture G_{se} = effective specific gravity of aggregate G_b = specific gravity of asphalt $$G_{\text{mm}} = \frac{100}{\frac{96}{2.761} + \frac{4.0}{1.030}} = \frac{100}{34.77 + 3.88} = 2.587$$ $G_{mm} = W_{mm} / V_{mm}$ $$P_{ba} = 100 \frac{G_{se} - G_{sb}}{G_{sb} G_{se}} G_b$$ where, Pba = absorbed asphalt, percent by weight of aggregate G_{se} = effective specific gravity of aggregate G_{sb} = bulk specific gravity of aggregate G_b = specific gravity of asphalt $$P_{ba} = 100 \left(\frac{2.761 - 2.703}{2.703 \times 2.761} \right) 1.030 = 100 \left(\frac{0.058}{7.463} \right) 1.030 = 0.8$$ $$P_{be} = P_b - \frac{P_{ba}}{100} P_s$$ where, Pbe = effective asphalt content, percent by total weight of mixture P_b = asphalt content, percent by total weight of mixture P_{ba} = absorbed asphalt, percent by weight of aggregate P_s = aggregate content, percent by total weight of mixture $$P_{be} = 5.3 - \frac{0.8}{100} \times 94.7 = 4.5$$ $$VMA = 100 - \frac{G_{mb} P_s}{G_{sb}}$$ where, VMA = voids in mineral aggregate, percent of bulk volume Gsb = bulk specific gravity of total aggregate Gmb = bulk specific gravity of compacted mixture (AASHTO T166; ASTM D 1188 or D 2726) P_s = aggregate content, percent by total weight of mixture $$VMA = 100 - \frac{2.442 \times 94.7}{2.703} = 100 - 85.6 = 14.4$$ $$VMA = 100 - \frac{G_{mb}}{G_{sb}} \times \frac{100}{100 + P_b} 100$$ where, P_b = asphalt content, percent by weight of aggregate. VMA = $$100 - \frac{2.442}{2.703} \times \frac{100}{100 + 5.6} \times 100 = 100 - 85.6 = 14.4$$ $$VMA = P_a + P_{be}$$ $$V_a = 100 \times \frac{G_{mm} - G_{mb}}{G_{mm}}$$ where, V_a = air voids in compacted mixture, percent of total volume G_{mm} = maximum specific gravity of paving mixture (as determined in Article 4.07 or as measured directly for a paving mixture by ASTM Gmb = bulk specific gravity of compacted mixture $$V_a = 100 \times \frac{2.535 - 2.442}{2.535} = 3.7$$ $$AV = 100 - \left(V_{sb} + P_{be}\right)$$ $$VFA = \frac{100 (VMA - V_a)}{VMA}$$ where, VFA = voids filled with asphalt, percent of VMA VMA = voids in mineral aggregate, percent of bulk volume V_a = air voids in compacted mixture, percent of total volume VFA = $$100 \times \frac{14.4 - 3.7}{14.4} = 74.3$$ percent | Worksheet for | | metric Anal
alysis by wei | | | | | | aving l | Mixtu | ıre | |--|-------------------------------------|------------------------------|----------|----------------|----------------|---------------------|----------|----------|---------|------| | Sample: | | | | | 9 | Date: | | | | | | Identification: | | | | | | | | | | | | Composition of Pay | ving M | lixture | | | | | | | | | | | | Specific Gra | avity, C | 3 | Mix | Comp | osition, | % by wt. | of Tota | Mix, | | | | | | | | Mix or Trial Number | | | | | | | + | | Bu | ılk | | 1 | 2 | 3 | 4 | 5 | | Coarse Aggregate | G ₁ | | 2.7 | 16 | Pt | | | 47.4 | | | | 2. Fine Aggregate | G ₂ | | | P ₂ | | | 47.3 | | | | | 3. Mineral Filler | G ₃ | | | - | P ₃ | | | | | | | 4. Total Aggregate | G ₈ | | 2 | P_{S} | | | 94.7 | | | | | 5. Asphalt Cement | Asphalt Cement G _b 1.030 | | | | Pb | | | 5.3 | | | | 6. Bulk Sp. Gr. (G _{sb}), total aggregate | | | | (1) | | | | 2.703 | | | | 7. Max. Sp. Gr. (Gm | m), pa | compacted mix ASTM D2726 | | | П | | | 2.535 | | | | 8. Bulk Sp. Gr. (Gmt |), com | | | | П | | | 2.442 | | | | 9. Effective Sp. Gr. (| G _{se}), t | | | | П | | | 2.761 | | | | 10. Absorbed Asphalt | (Pba) | | | | П | | | 0.8 | | | | CALCULATIONS | | | | | | | | | | | | 11. Effective Asphalt Content (P _{be}) = Line 5 P _b - \frac{\left(\text{Line 10} \times \text{Line 4 P _s \right)}{100}}{100} | | | | | Г | | | | | | | | | | | (5) | | | | 4.5 | | | | | | | | | | | | | | | | 100 – 🗀 | Lir | Line 4 P _S
e 6 | | (6) | | | | 14.4 | | | | 13. Air Voids (Va) = | ine 7 | Line 8 | | | | | | | | | | 100 — | Line | 7 | | (8) | | | | 3.7 | | | | 14. VFA = | ine 12 | - Line 13 | | | | | | | | | | 100 - | 12 | - Line 13 | | (9) | | | 1 | 74.3 | | 1 | | Worksheet for | Volu
(A | metric Ana | lysis
veight | of C | om _l | pacte
gate) | d Pa | ving l | Mixtu | ire | | | |--|---|----------------------------|-----------------|----------------|-----------------|---|-------|--------|-------|-----|--|--| | Sample: | | | | | | Date: | | | | | | | | Composition of Pa | ving N | lixture | | | | | | | | | | | | | Н | Specific Gravity, G | | | | Mix Composition, % by wt. of Aggregate, P | | | | | | | | | - 1 1 | | Bu | ik | 1 | 1 2 | | 3 | 4 | 5 | | | | Coarse Aggregate | G ₁ | | 2.7 | 16 | P ₁ | | | 50.0 | | | | | | 2. Fine Aggregate | G ₂ | . P ₂ | | P ₂ | | | 50.0 | | | | | | | 3. Mineral Filler | G ₃ | | | P ₃ | | | | | | | | | | 4. Total Aggregate | Gs | | | Ps | | | 100.0 | | | | | | | 5. Asphalt Cement | ement G _b 1.030 | | | | Pb | | | 5.6 | | | | | | 6. Bulk Sp. Gr. (Gsb |), total | , total aggregate | | | П | | | 2.703 | | | | | | 7. Max. Sp. Gr. (Gm | Gr. (G _{mm}), paving mix ASTM | | | | П | | | 2.535 | | | | | | 8. Bulk Sp. Gr. (Gml | b), com | | | | П | | | 2.442 | | | | | | 9. Effective Sp. Gr. | (Gse), t | | | | | | | 2.761 | | | | | | 10. Absorbed Asphal | t (Pba), | | | | П | | | 0.8 | | | | | | CALCULATIONS | | | | П | | | | | | | | | | 11. Effective Asphalt | Effective Asphalt Content (Pbe) = | | | | | | | | | | | | | Line 5 Pb - | Line 1 | × 100 × 100 × 100 × 100 | | | | | | 4.5 | | | | | | 12. VMA = 100 - Line Line | 8
6 × 10 | | | | | h y | | 14.4 | | | | | | 13. Air Voids (V _a) = 100 _L | ine 7 – | | | (8) | | | | 3.7 | | | | | | 14. VFA = 100 | Line 12 | ne 12 – Line 13
Line 12 | | | | | 8 | 74.3 | | | | | Table 5.3 - Minimum percent voids in mineral aggregate (VMA) | | | Minimum VMA, percent | | | | | | | | |--|--------|--|------|------|--|--|--|--|--| | Nominal Maximum
Particle Size ^{1, 2} | | Design Air Voids, Percent ⁵ | | | | | | | | | mm | in. | 3.0 | 4.0 | 5.0 | | | | | | | 1.18 | No. 16 | 21.5 | 22.5 | 23.5 | | | | | | | 2.36 | No. 8 | 19.0 | 20.0 | 21.0 | | | | | | | 4.75 | No. 4 | 16.0 | 17.0 | 18.0 | | | | | | | 9.5 | 3/8 | 14.0 | 15.0 | 16.0 | | | | | | | 12.5 | 1/2 | 13.0 | 14.0 | 15.0 | | | | | | | 19.0 | 3/4 | 12.0 | 13.0 | 14.0 | | | | | | | 25.0 | 1.0 | 11.0 | 12.0 | 13.0 | | | | | | | 37.5 | 1.5 | 10.0 | 11.0 | 12.0 | | | | | | | 50 | 2.0 | 9.5 | 10.5 | 11.5 | | | | | | | 63 | 2.5 | 9.0 | 10.0 | 11.0 | | | | | | - Standard Specification for Wire Cloth Sieves for Testing Purposes, ASTM E11 (AASHTO M92) The nominal maximum particle size is one size larger than the first sieve to retain more than 10 percent. Interpolate minimum voids in the mineral aggregate (VMA) for design air void values between those listed.