INTRODUCTION TO MIX DESIGN

Presented by

prof. Hamad I. Al-Abdul Wahhab

Civil Engineering Department
King Fahd University of Petroleum & Minerals
Dhahran, Saudi Arabia

H.A.W.

2 1 1

EXISTING MIX DESIGN METHODS MARSHALL MVEEM

H.A.W

Marshall Mix Design

- Three types of hammers used
- 50 or 75 blow compactive effort
- Lab density equal to field density after traffic
- Volumetric properties
- Marshall stability and flow

Marshall Mix Design – Advantages

- Cheap
- Simple
- Portable

HAW. 2.1.9

Marshall Mix Design - Disadvantages

- Empirical
- Does not predict performance
- Load perpendicular to compaction axis
- Does not orient aggregate particles like traffic

H.A.W.

H.A.W

2 1 13

Hveem Mix Design:

- Compact with kneading compactor
- Lab density equal to field density after traffic
- Volumetric properties
- Hveem stability

H.A.W.

Hveem Mix Design – Disadvantages

- Costly, more complicated, and less portable than Marshall
- Empirical
- Does not predict performance

HAW. 2.1.1

Marshall and Hveem have worked satisfactorily to date but with heavier

load and higher tire pressure these methods need to be improved.

HAW. 2.1.

What do we need in a new method?

- Orients particles more like traffic
- Test sample like traffic
- Predicts performance

HAW. 2.1.