The Little Book of Profiling

www.umtri.umich.edu/erd/roughness/ index.html

Outline

- Ride Quality
- Smoothness Measurement
- Profile-Based Indices
- Construction Quality Control

Ride Quality

- Sine Waves
- Human Response to Vibration
- Vehicle Response to the Road
- Road Roughness

Ride Quality

- Sine Waves
- Human Response to Vibration
- Vehicle Response to the Road
- Road Roughness

Ride Quality

- Sine Waves
- Human Response to Vibration
- Vehicle Response to the Road
- Road Roughness

Human Response to Vibration

- Vital organs in the abdominal cavity "resonate" at about 5 Hz.
- A human head resonates at about 25 Hz.
- Human eyes resonate at 30-80 Hz.
- It is tough to grip a steering wheel if it is moving at 50-200 Hz.

Human Response to Vibration

The automobile industry estimates ride by measuring response at several interfaces:

Seat/buttock Seat/back Floor/feet Steering Wheel/Hand

Human Response

Ride Quality

- Sine Waves
- Human Response to Vibration
- Vehicle Response to the Road
- Road Roughness

Vehicle Response to the Road

- Auto companies spend considerable effort study vehicle vibrations:
 - heave, waddle, shake, chatter, jitter, porpoise, tire nibble, etc.
- Two major motions are body bounce and axle hop.

Vehicle Response to the Road

- The vehicle exaggerates some road features and isolates you from others.
- Each vehicle responds to the roughness of the road differently.
- Some features in the road are more significant to vehicle response than others.

Ride Quality

- Sine Waves
- Human Response to Vibration
- Vehicle Response to the Road
- Road Roughness

Road Roughness as Vehicle Input

- Pavements have certain roughness characteristics that are predictable.
- Short wavelength roughness often has lower amplitude.
- New pavements often have roughness characteristics that can be related directly to construction practices.

- Straightedges
- Profilographs
- Response-Type Measurement
- Inertial Profilers
- Inclinometer-Based Profilers

Smoothness Measurement

- Straightedges
- Profilographs
- Response-Type Measurement
- Inertial Profilers
- Inclinometer-Based Profilers

- Straightedges
- Profilographs
- Response-Type Measurement
- Inertial Profilers
- Inclinometer-Based Profilers

Automated Trace Reduction

Need 6 "settings":

- 1. blanking band
- 2. high-pass filter cutoff
- 3. minimum scallop width
- 4. minimum scallop height
- 5. scallop rounding increment
- 6. drift removal strategy

Major Vehicle Vibrations

Body Motion: 1-3 Hz (pitch and bounce) Axle Motion: 10-15 Hz (axle hop and axle tramp)

Summary Results

Feature	PI, 0.2-in banc (in/mi)	PI, zero band (in/mi)	IRI (in/mi)
Long Duration	7.6	24.7	93.1
Short Duration	0	41.8	90.0
Both	11.4	28.5	116.6

Chatter Examples

- In ProVAL, demonstrate chatter caused by:
 - Roller problems
 - Oscillating screed

101	llog	ŗaj	pn (Out
From	TO	Dist	Count	PI(in/mi)
1189+00	1191+64	264	0.38	7.60
1191+64	1194+28	264	0.23	4.60
1194+28	1196+92	264	0.11	2.30
1100+56	1202+20	264	0.13	2.00
1202+20	1204+84	264	0.01	1.00
1204+84	1207+48	264	0.03	0.70
1207+48	1210+12	264	0.10	1.90
1210+12	1212+76	264	0.00	0.00
•••	•			
1278+76	1281+40	264	0.12	2.40
1281+40	1284+04	264	0.02	0.40
1284+04	1286+68	264	0.04	0.98
1286+68	1289+32	264	1.03	20.60
1289+32	1289+76	44	0.27	31.80
1286+68	1289+76	308	1.29	22.20
Total		10076	6.00	3.15

- Straightedges
- Profilographs
- Response-Type Measurement
- Inertial Profilers
- Inclinometer-Based Profilers

"Roughometer"

Response-Type Trailer

- Straightedges
- Profilographs
- Response-Type Measurement
- Inertial Profilers
- Inclinometer-Based Profilers

Inertial Profiler

- A profiler works by combining three ingredients:
 - (1) a reference elevation,
 - (2) a height relative to the reference, and
 - (3) longitudinal distance.

High-Speed Profiler

- Straightedges
- Profilographs
- Response-Type Measurement
- Inertial Profilers
- Inclinometer-Based Profilers

ARRB Walking Profiler

Questions?

Profile-Based Indices

- International Roughness Index
- Half-Car Index
- Ride Number

Profile-Based Indices

- International Roughness Index
- Half-Car Index
- Ride Number

What is the IRI?

- IRI was originally developed as a correlation standard for response-type systems.
- The Index was tuned to maximize correlation with a large collection of response type systems.

Profile-Based Indices

- International Roughness Index
- Half-Car Index
- Ride Number

Half-Car Roughness Index

- The HRI is calculated from a two profiles.
- The profiles are averaged point by point to create an "average" profile.
- The IRI algorithm is applied to the resulting profile.

Profile-Based Indices

- International Roughness Index
- Half-Car Index
- Ride Number

Ride Number

- Ride Number (RN) is an estimate of Mean Panel Rating.
- Ride Number is the result of NCHRP research in the 1980's.

Ride Number

- Ride Number uses the 0 to 5 PSI scale.
- Ride Number is a nonlinear transform of a statistic called PI.

 $RN = 5e^{-160PI}$

Ride Number Ride Number Ride Number Ohio Sections Minnesota Sections Std. Error = .29 Std. Error = 34 $R^2 = .85$ $R^2 = .88$ 2 0-0. 1 2 3 4 Mean Panel Rating 1 2 3 4 Mean Panel Rating 0 4 5 0 4 5

Questions?

Interpretation for Quality Control

- Fixed Interval Report
- Job Summary
- Hot Spot Plot
- Hot Spot Table

Ohio Turnpike Third Lane

	Rect	ified F	Respon	se	
Rectified Filter 200 T 150 100 50 T	Output (in/mi)		huillandadh	un dal de col del	hadde or a
0					
1000	1100	1200 Distar	1300 nce (ft)	1400	1500

Fixed-Interval Report						
Start(ft)	End(ft)	HRI(in/mi)				
0	500	39.8				
500	1000	29.7				
1000	1500	42.0				
1500	2000	40.1				
2000	2500	36.2				
2500	3000	41.6				
3000	3500	48.5				
3500	4000	51.0				
4000	4500	44.0				
4500	5000	45.5				

J	ob Sumn	nary
Low IRI (in/mi)	High IRI (in/mi)	Percentage
0	10	0.0
10	20	0.0
20	30	8.3
30	40	35.4
40	50	40.5
50	60	15.8
60	70	0.0
70	80	0.0
80	90	0.0
90	100	0.0

Hot	Hot Spot Locations				
Segment Start	: Segment End	Peak HRI			
(ft)	(ft)	(in/mi)			
3201	3274	64.6			
3276	3280	60.3			
3925	4123	76.5			
4495	4583	85.9			

Opt	timal Grin	ding Strate	gy
Grind Start	Grind End	HRI Change	Max. Deptl
(ft)	(ft)	(in/mi)	(in)
3945	3990	4.8	0.36
4058	4093	5.4	0.33
4473	4587	6.1	0.16

Essential Features

- 1. Use of profilers over profilographs.
- 2. Choice of and index.
- 3. Continuous reporting.
- 4. Short and long interval criteria.
- 5. Grinding simulation.

Questions?

Thank you.