Overall Project Evaluation

(Fact 3) APEP 1

Introduction

Concept - Overall goal of rehabilitation design is to provide:

- Cost-effective Solution
- Address deficiencies
- Satisfy constraints

Importance of through evaluation

Data Requirements

Consider data categories

Requirements also depend upon potential rehabilitation candidates

Develop checklist

Consider purposes

- Qualitative
- Quantitative

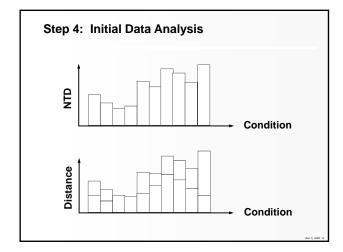
Strive for balance

Project Evaluation Flow Chart	
Office / Historical Data Collection	
Initial Site Visit	
→ Primary Field Survey	
→ Initial Data Analysis	
→ Secondary Field Survey	
→ Laboratory Materials Characterization	
Secondary Data Analysis	
Structural Capacity Analysis	
(Inc.) A959-4	

Step 1: Office / Historical Data Collection

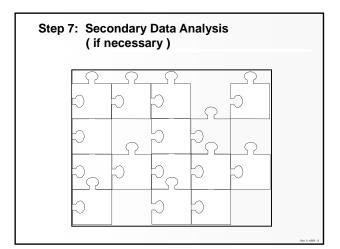
Office Files Historical record

Step 2: Initial Site visit


Design and maintenance engineers

- Scope of primary survey
- Assess potential mechanisms
- Identify candidate rehabilitation treatments
- Assess traffic control needs

Subjective information on distress, roughness, surface friction and drainage "Windshield" or Shoulder survey


har Is ADED

Condition Distress Roughness Friction NDT Drainage Traffic

NTD • Max / Min deflection • Deflection indices • Layer moduli Condition • Distress • Roughness • Surface friction

Step 4: Initial Data Analysis	
Structure / Soils	
• Layer thickness	
Soil type or cut / fill	
Moisture / drainage	
One is notice to	
Step 5: Second Field Survey	
Destructive sampling	
NDT variability Reskasionlation problems	
Backcalculation problems Stripping	
Additional NDT	
Intensive deflection testing	
Other NDT devices	
(bel) 400° 13	
	_
Step 6: Laboratory Materials Characterization (if necessary)	
(ii flecessary)	
Indirect tensile strength	
Resilient modulus	
R - Value	
CBR	
Existing mix properties	
Density / Gradation	
Orah AND H	

Step 8: Structural Capacity Assessment

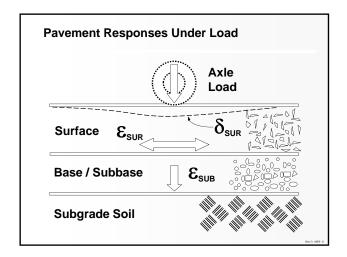
Three basic methods are available

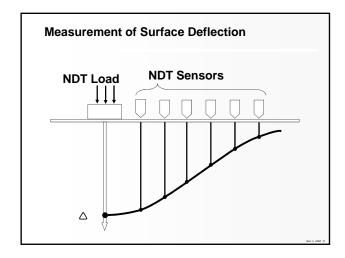
By Existing Distress

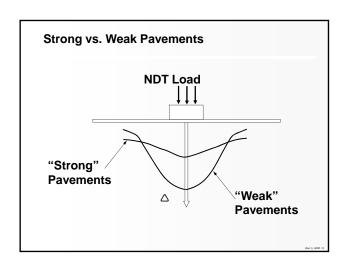
Compare current structural distress levels with "failure" criteria

By Compor	ent Analysis		
Layer	Thickness	Condition SC	
НМА	T ₁	$X_1 \longrightarrow SC_1$	
Base	T ₁	$X_2 \longrightarrow SC_2$!
Subbase	T ₃	$X_3 \longrightarrow SC_3$	3
Effective	Structural	Capacity = Tota	ı

Nondestructive


NDT - Valuable engineering tool in assessing uniformity and structural adequacy


Useful


- Identify subsections
- Identify locations for sampling / testing
- Characterize material properties
- Rational basis for structural capacity assessment

Nondestructive

- → Productive 200 to 400 measurements per day repeatable
- **⇒** Repeatable
- **⇒** Used by some states for project and some network evaluations

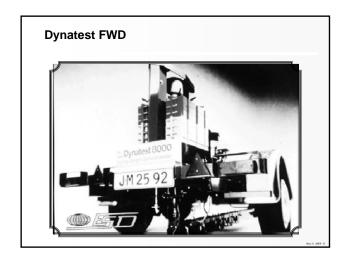
Potential Results From NDT	
⇒ Project variability	
⇒ Subgrade soil support	
⇒ In-situ material properties	
⇒ Structural adequacy	
	-
(bu-1), ARP 21	
Types of NDT Equipment	
⇒ Static	
⇒ Vibratory	
⇒ Impulse	
⇒ Surface wave propagation	
Surface wave propagation	
(No.1), ARIO 23	
"Static" Load Device	
Static Load Device	
⇒ Benkelman beam	
⇒ California Traveling	
Deflectometer	
⇒ La Croix Deflectograph	
2 La Groix Boriottograph	

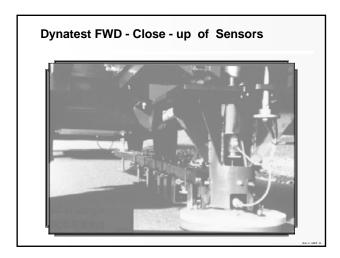
Benke	lman beam		
	SUPPORT BEAM	-	EASUREMENT PROBE

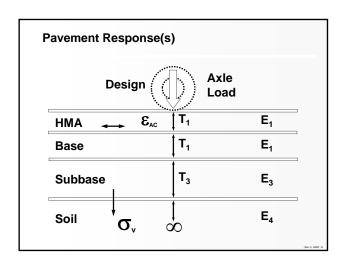
Vibratory (steady state dynamic) Equipment

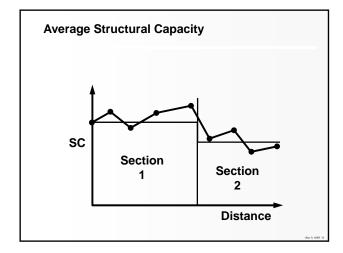
Dynaflect

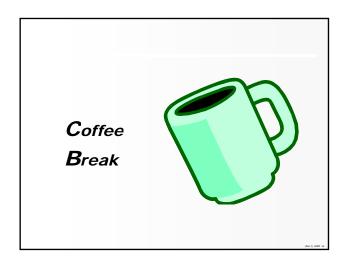

Road Rater (3 models)


Dynaflect




Road Rater


Road Rater - Close - up of Sensors



Summary

Benefits / importance

Data requirements

Project evaluation flowchart

