CHAPTER-Ś TOPOGRAPHIC SURVEYING AND MAPPING

Precision If points to be plotted on at scale 1:500 → precision 0.25 m If points to be plotted on at scale 1:20,000 → precision 10 m Some details can be precisely determined → e.g. bldg corner Some details cannot precisely determined → e.g. stream banks Some details can be determined with moderate precision → e.g. single large tree

Details that can be well defined is located with more precision than required just for plotting because:

o It take little effort

 \circ Uniform practice

Some details are shown as layout dimensions

- If area contain only natural feature, stadia is used

- All topographic surveys are tied into both horizontal and vertical control (Benchmark)

- Horizontal control could be:
 - Closed transverse
 - Transverse from coordinate grid monuments
 - Close to another coordinate grid monuments
 - Route centerline
 - Assumed baseline

-Measurement taken to establish control are more precise than other measurements
-Control should be accurate and well references
-Control should be used for additional work (e.g. layout)

Location by Right Angle Offset

-Used in all topographic survey except mapping

-Provide location of details and area elevation taken by X-section

-Measure distance to base line and station on baseline

-Baseline laid by stakes (nails),

-Sketch in note book

-Tape can be laid on baseline if terrain is smooth

-Details on both sides of baseline or make split baselines

-Penta prism or (swing-arm technique (Appx.)

-SAT good result for short of test 15 m otherwise use penta prism or transit

Cross Section and Profile

-Cross section to the baseline

-Profile along the baseline

-Elevation plotted as spot elevation, contours or end area for construction quantity estimation

-Intervals 20/30 in. – in changing terrain 10-15 m + any sudden change in terrain (top, bottom of slops)

Introduction

- Cultural features on the maps are the products of people, and include
 - roads,
 - railroads,
 - buildings,
 - bridges,
 - canals,
 - boundary lines, etc.

Introduction

- Type of maps
 - planimetric; include natural and cultural features in the plan view only, and
 - **topographic**; include planimetric features and show the configuration of the earth's surface.

Basic Methods for Performing Mapping Surveys

- Aerial (photogrammetric) techniques, and
- Ground (field) techniques.
- Often combination both are employed.

Map Scale

- The ratio of the length of an object or feature on a map to the true length of the object or feature.
- Map scales are given in three ways:
 - by ratio or representative fraction, such as 1:2000 or 1/2000
 - by an equivalence, for example 1 in. = 200 ft.
 - graphically using either a bar scale or labeled grid lines spaced.

Characteristics of Contours

- Contour lines must close on themselves, either on or off a map. They cannot dead-end.
- Contours are perpendicular to the direction of maximum slope.
- The slope between adjacent contour lines is assumed to be uniform.
- The distance between contours indicates the steepness on a slope. Wide separation → Gentle slopes

Close spacing \rightarrow Steep slope

Even and parallel spacing \rightarrow Uniform slope

- Irregular contours: rough, rugged country
- Smooth lines: more uniformly rolling terrain.
- Concentric closed contours that increase in elevation represent hills.

Topographic Survey

Contours

There are several rules to note when viewing topographic maps:

- The rule of Vs: sharp-pointed V usually are in stream valleys, with the drainage channel passing through the point of the V, with the V pointing upstream.
- The rule of Os: closed loops are normally uphill on the inside and downhill on the outside, and the innermost loop is the highest area.
- Spacing of contours: close contours indicate a steep slope; distant contours a shallow slope. Two or more contour lines merging indicates a cliff.

Locating Contours

- Direct Method
- Indirect Method
- Direct Method: In this method, the contour lines are physically followed on the ground using a total station.
 - After the instrument set up, the HI is established, and the telescope oriented horizontally.
 - Then for the existing HI, the rod reading (FS) that must be subtracted to give a specific contour elevation is determined.
 - The rod person selects trial points expected to give this minus sight, and is directed uphill or downhill by the instrument operator until the required reading is actually secured.

Locating Contours

- Direct Method
 - This method is not practical in rough terrain.
 - Neither is it convenient for observing data to be used in computer-driven automated contouring systems.

