Chapter 4 Angles and Directions

4.1 General Background

Angles in surveying are measured with

- A transit / theodolite , or
- Total station

4.2 Reference Directions for Vertical Angles

Vertical angles are referenced to:

- 1. The horizon by up (+), or down (-)
- 2. Zenith
- 3. Nadir

Note:

Zenith: is directly above the observer Nadir : is directly below the observer

4.5 Azimuths

- An azimuths is direction of line as given by an angle measured clockwise (usually) from the north end of a meridian.
- Azimuths range is magnitude from 0° to 360°

4.7 Relationships Between Bearings and Azimuths

• To convert from azimuths to bearings by using this table:

quadrant	quadrant letters	Numerical value
From 0° to 90°	NE	bearing = azimuth
From 90° to 180°	SE	bearing= 180° - azimuth
From 180° to 270°	SW	bearing= azimuth - 180°
From 270° to 360°	NW	bearing= 360° - azimuth

4.7 Relationships Between Bearings and Azimuths

• To convert from bearings to azimuths by using this relationships:

- 1. NE quadrant \longrightarrow azimuth = bearing
- 2. SE quadrant \longrightarrow azimuth = 180° bearing
- 3. SW quadrant _____ azimuth = 180 °+ bearing
- 4. NW quadrant _____ azimuth = 360° bearing
- <u>Example:</u> convert :
 - 1. 200°58' = S20°58'W
 - 2. N2°21'W = 357°39'

4.8: Reverse Directions:

- It can be said that every line has two direction.
- Forward direction is direction that oriented in the direction of fieldwork or computation staging.
- Back direction is direction that oriented in the reverse of the direction fieldwork or computation staging.

4.9 Az	zimuths Co	omputation
	kwise directio le to the back a urse	
Course	Azimuths	Bearing
BC	270° 28'	N 89º 32' W
CD	209º 05'	S 29º 05' W
DE	134º 27'	S 45º 33' E
EA	62º 55'	N 62º 55' E
AB	330º 00'	N 30º 00' W

4.9 A	zimuths C	omputation
		ract the interior angle f the previous course
Course	Azimuths	Bearing
AE	242º 55'	S 62º 55' W
ED	314º 27'	N 45º 33' W
DC	29º 25'	N 29º 05' E
DC CB	29º 25' 90º 28'	N 29º 05' E S 89º 32' E

Advantage of computing bearings directly from the given data in a closed traverse, is that the final computation provides a check on all the problem, ensuring the correctness of all the computed bearings

4.11 Comments on Bearing and Azimuths

The computation of azimuths involves a highly systematic routine: **add (subtract) the interior angle** from the back azimuths of the previous course.

