14

Chapter 5 - Repetition
Updated by Husni Al-Muhtaseb
21 April 1997
`15

5.3 The WHILE Loop

New versions of Fortran compilers do accept explicit WHILE loops. One of these general forms can be presented as follows:

DO WHILE (condition)

block of statements
end do
In this construct, the condition is checked before executing the block of statements. The block of statements is executed only if the condition, which is a logical expression, evaluates to a true value. At the end of each iteration (END DO), the control returns to the beginning of the loop where the condition is checked again. Depending on the value of the condition, the decision to continue for another iteration is made. This means that the number of iterations the WHILE loop makes depends on the condition of the loop and could not always be computed before the execution of the loop starts. This is the main difference between WHILE and DO repetition constructs.

In other words, The following steps occur when a DO WHILE statement is executed:

1. The condition (logical expression) is evaluated.

2. If the value of the condition is FALSE, none of the statements within the loop (block of statements) is executed and control jumps to the statement following the END DO.

3. If the value of the expression is TRUE, the statements within the loop (block of statements) are executed.

4. when the END DO statement is reached, control returns to the DO WHILE statement where the condition is evaluated and cycle repeats.

The execution of the loop starts if the condition evaluates to a TRUE value. Once the loop iterations begin, the condition must be ultimately changed to a FALSE value, so that the loop stops after a finite number of iterations. Otherwise, the loop never stops resulting in what is known as the infinite loop. In the following section, we elaborate more on the WHILE loop.

5.3.1 Examples on WHILE Loops

Example 1: Computation of the Average: Write a FORTRAN program that reads the grades of 100 students in a course. The program then computes and prints the average of the grades.

Solution:

REAL X, AVG, SUM

INTEGER K

K = 0

SUM = 0.0

DO WHILE (K.LT.100)

Print*, 'Enter grade number ', k

READ*, X

Print*, 'input: ', x

K = K + 1

SUM = SUM + X

END DO

AVG = SUM / K

PRINT*, AVG

END
Note that the variable K starts at 0. The value of K is incremented after the reading of a grade. The WHILE condition (K.LT.100) prevents the loop from reading any new grades once the 100th grade is read. Reading the 100th grade causes K to be incremented to the value of 100 as well. Therefore, when the condition is checked in the next iteration, it becomes FALSE and the loop stops.

In each iteration, the value of the variable GRADE is added to the variable SUM. After the loop, the average is computed by dividing the variable SUM by the variable K.

Example 2: The Factorial: The problem is the same as the one discussed in Example 2 of Section 5.2. In this context, however, we will solve it using a WHILE loop.

Solution:

INTEGER M, TERM, FACT

Print*, 'Enter An integer number'

READ*, M

Print*, 'input: ', M

IF (M.GE.0) THEN

FACT = 1

TERM = M

DO WHILE (TERM.GT.1)

FACT = FACT *TERM

TERM =TERM - 1

END DO

PRINT*,'FACTORIAL OF ', M, ' IS ', FACT

ELSE

PRINT*, 'NO FACTORIAL FOR NEGATIVES'

ENDIF

END
Note the similarities between both solutions. The WHILE loop starts from M (the value we would like to compute the factorial of) and the condition of the loop makes sure that the loop will only stop when TERM reaches the value 1.

Example 3: Classification of Boxers: Write a FORTRAN program that reads the weights of boxers. Each weight is given on a separate line of input. The boxer is classified according to the following criteria: if the weight is less than or equal to 65 kilograms, the boxer is light-weight; if the weight is between 65 and 85 kilograms, the boxer is middle-weight and if the weight is more than or equal to 85, the boxer is a heavy-weight. The program prints a proper message according to this classification for a number of boxers by reading their weights repeatedly from the input. This repetitive process of reading and classification stops when a weight of -1.0 is read.
Solution:

REAL WEIGHT

Print*, 'Enter WEIGHT'

READ*, WEIGHT

Print*, 'INPUT: ', WEIGHT

DO WHILE (WEIGHT.NE.-1.0)

IF (WEIGHT.LT.0.OR.WEIGHT.GE.400) THEN

PRINT*, ' WEIGHT IS OUT OF RANGE '

ELSEIF (WEIGHT.LE.65) THEN

PRINT*, ' LIGHT-WEIGHT '

ELSEIF (WEIGHT.LT.85) THEN

PRINT*, ' MIDDLE-WEIGHT '

ELSE

PRINT*, ' HEAVY-WEIGHT '

ENDIF

READ*, WEIGHT

END DO

END
Note that in this example, the condition that stops the iterations of the WHILE loop depends on the READ statement. The execution of the loop stops when a value of -1.0 is read. This value is called the end marker or the sentinel, since it marks the end of the input. A sentinel must be chosen from outside the range of the possible input values.

5.4 Nested WHILE Loops XE "Nested WHILE Loops"
WHILE loops may be nested, that is you can put a WHILE loop inside another WHILE loop. However, one must start the inner loop after starting the outer loop and end the inner loop before ending the outer loop for a logically correct nesting. (The following example is equivalent to the nested DO loop example given earlier.)

Example: Consider the following program.

M = 1

DO WHILE(M .LE. 2)

J = 1

DO WHILE(J .LE. 6)

PRINT*, M, J

J = J + 2

END DO

M = M + 1

END DO

END
The output of the above program is:

1
1
1
3
1
5
2
1
2
3
2
5
There are two nested WHILE loops in the above program. The outer loop is controlled by the variable M. The inner loop is controlled by the variable J. For each value of the variable M, the inner loop variable J takes the values 1, 3 and 5.

5.5 Examples on DO and WHILE Loops

Example 1: Evaluation of Series: Write a FORTRAN program that evaluates the following series to the 7th term.

(Summation of base 3 to the powers from 1 to N. Assume N has the value 7)

Solution:

INTEGER SUM

SUM = 0

DO 11 K = 1, 7

SUM = SUM + 3 ** K

11
CONTINUE

PRINT*, SUM

END
Example 2: Alternating Sequences/ Series: Alternating sequences, or series, are those which have terms alternating their signs from positive to negative. In this example, we find the sum of an alternating series.

 Question: Write a FORTRAN program that evaluates the following series to the 100th term.
1 - 3 + 5 - 7 + 9 - 11 + 13 - 15 + 17 - 19 + ...

Solution:

It is obvious that the terms differ by 2 and start at the value of 1.

INTEGER SUM, TERM,NTERM

SUM = 0

TERM = 1

DO 10 NTERM = 1, 100

SUM = SUM + (-1) ** (NTERM + 1) * TERM

TERM = TERM + 2

10
CONTINUE

PRINT*, SUM

END
Notice the summation statement inside the loop. The expression (-1) ** (NTERM + 1) is positive when NTERM equals 1, that is for the first term. Then, it becomes negative for the second term since NTERM + 1 is 3 and so on.

Example 3: Series Summation using a WHILE loop: Question: Write a FORTRAN program which calculates the sum of the following series :

Solution:

REAL N, SUM

N = 1

SUM = 0

DO WHILE(N.LE.99)

SUM = SUM + N / (N + 1)

 N = N + 1

END do

PRINT*, SUM

END
In the above program, if N is not declared as REAL, the expression N/(N+1), in the summation inside the loop, will always compute to zero.

Example 4: Conversion of a WHILE loop to a DO loop: Convert the following WHILE loop into a DO loop.

REAL X, AVG, SUM

INTEGER K

K = 0

SUM = 0.0

DO WHILE(K.LT.100)

READ*, X

K = K + 1

SUM = SUM + X

END do

AVG = SUM / K

PRINT*, AVG

END
In the WHILE loop, K starts with the value of 0, and within the loop it is incremented by 1 in each iteration. The termination condition is that the value of K must exceed 99. In the equivalent program using a DO loop, K starts at 0 and stops at 99 and gets incremented by 1 in each iteration.

Solution:

The equivalent program using a DO loop is as follows:

REAL X, AVG, SUM

INTEGER K

SUM = 0.0

DO 25 K = 0, 99, 1

READ*, X

SUM = SUM + X

 25
CONTINUE

AVG = SUM / 100

PRINT*, AVG

END
An important point to note in this example is the way the average is computed. The statement that computes the average divides the summation of the grades SUM by 100. Note that the value of the K is 100 because the loop stops when the value of K exceeds 99. Keeping in mind that the increment is 1, the value of K after the loop terminates is 100. However, it is not recommended to use the value of the index outside the DO loop.

It is also important to note that any other parameters such as:

DO 25 K = 200, 101, -1

would also have the same effect. Note that the variable K exits the loop with the value 100 in this case as well.

It is not always possible to convert a WHILE loop into a DO loop. As an example, consider the WHILE loop in the Classification of Boxers example. There, we cannot accomplish the conversion because the number of times the WHILE loop gets executed is not known. It depends on the number of data values before the end marker.

5.6 Implied Loops

Implied loops XE "Implied loops" are only used in READ and PRINT statements. The implied loop is written in the following manner :

READ*,(list of variables, index = initial, limit, increment)

PRINT*,(list of expressions, index = initial, limit, increment)

As in the case of explicit DO loops, the index must be either an integer or real expression. The variables in the READ statement can be of any type including array elements. The expressions in the PRINT statement can be of any type as well. All the rules that apply to DO loop parameters also apply to implied loop parameters. Usage of implied loops is given in the following examples :

Example 1: Printing values from 100 to 87: The following segment prints the integer values from 100 down to 87 in a single line.

PRINT*, (K, K = 100 , 87 , -1)

Output:

100 99 98 97 96 95 94 93 92 91 90 89 88 87

Notice that the increment is -1, which means that the value of K decreases from 100 to 87. In each iteration, the value of K is printed. The value of K is printed

 times. Since K is the index of the loop, the value printed here is the value of the index, which varies in each iteration. Consider the following explicit DO loop version of the implied loop :

DO 60 K = 100, 87 , -1

PRINT*, K

60
CONTINUE
Output:

100

 99

 98

...

...

...

 87

The two loops are equivalent except in terms of the shape of the output. In the implied loop version, the output will be printed on one line. In the explicit DO loop version, the output will be printed as one value on each line.

Example 2: Printing more than one value in each iteration of an implied loop: The following segment prints a percentage sign followed by a + sign three times :

PRINT*, ('%' , '+' , M = 1 , 3)

This produces the following output:

%+%+%+

Notice that the parenthesis encloses both the % and the + signs, which means they both have to be printed in every iteration the loop makes.

Example 3: Nested Implied Loops: An implied loop may be nested either in another implied loop or in an explicit DO loop. There is no restriction on the number of levels of nesting. The following segment shows nested implied loops.

PRINT*, ((K, K = 1 , 5 , 2), L = 1 , 2)

Nested implied loops XE "Nested implied loops" work in a similar manner as the nested DO loops. One very important point to note here is the double parenthesis before the K in the implied version. It means that the inner loop with index variable K is enclosed within the outer one with index variable L. The L loop is executed

 times. The K loop forces the value of K to be printed

 iterations. However, since the K loop is nested inside the L loop, the K loop is executed 3 times in each iteration of the L loop. Thus, K is printed 6 times. Therefore, the output of the implied version is:

1
3
5
1
3
5

5.7 Repetition Constructs in Subprograms

Subprograms in FORTRAN are considered separate programs during compilation. Therefore, repetition constructs in subprograms XE "subprograms" are given the same treatment as in programs. The following is an example that shows how repetition is used in subprograms.

Example: Count of Integers in some Range that are Divisible by a given Value: Write a function subprogram that receives three integers as input. The first and second input integers make the range of values in which the function will conduct the search. The function searches for the integers in that range that are divisible by the third input integer. The function returns the count of such integers to the main program. The main program reads five lines of input. Each line consists of three integers. After each read, the main program calls the function, passes the three integers to it and receives the output from it and prints that output with a proper message :

Solution:

INTEGER K, L, M, COUNT, J, N

DO 10 J = 1 , 5

READ*, K, L, M

N = COUNT(K , L , M)

PRINT*, 'COUNT OF INTEGERS BETWEEN',K,'AND', L

PRINT*, 'THAT ARE DIVISIBLE BY', M, 'is', N

PRINT*
10
CONTINUE

END

INTEGER FUNCTION COUNT(K , L , M)

INTEGER K, L, M, INCR, NUM, J

INCR = 1

NUM = 0

IF (L .LT. K) INCR = -1

DO 10 J = K, L, INCR

IF (MOD(J , M) .EQ. 0) NUM = NUM + 1

10
CONTINUE

COUNT = NUM

RETURN

END
If we use the following input:

2
34
2

-15
-30
 5

70
32
 7

0
20
 4

-10
10
10

The typical output would be as follows:

COUNT OF INTEGERS BETWEEN 2 AND 34

THAT ARE DIVISIBLE BY 2 IS 12

COUNT OF INTEGERS BETWEEN -15 AND -30

THAT ARE DIVISIBLE BY 5 IS 4

COUNT OF INTEGERS BETWEEN 70 AND 32

THAT ARE DIVISIBLE BY 7 IS 6

COUNT OF INTEGERS BETWEEN 0 AND 20

THAT ARE DIVISIBLE BY 4 IS 6

COUNT OF INTEGERS BETWEEN -10 AND 10

THAT ARE DIVISIBLE BY 10 IS 3

Remember what we said about the subprogram being a separate entity from the main program invoking it. Accordingly, note the following in the above example:

· It is allowed to use the same statement number XE "statement number" in the main program and subprograms of the same file. Notice the statement number 10 in both the main program and the function subprogram

· It is also allowed to use the same variable name as index of DO loops in the main program and the subprogram. Notice the variable J in the above

5.8 Exercises

1. What will be printed by the following programs?

1.
LOGICAL FUNCTION PRIME(K)

INTEGER N, K

PRIME = .TRUE.

DO 10 N = 2, K / 2

IF (MOD(K , N) .EQ. 0) THEN

PRIME = .FALSE.

ENDIF
10
CONTINUE

RETURN

END

LOGICAL PRIME

PRINT*, PRIME(5), PRIME(8)

END
2.
INTEGER FUNCTION FACT(K)

INTEGER K,L

FACT = 1

DO 10 L = 2 , K

FACT = FACT * L

10
CONTINUE

RETURN

END

INTEGER FUNCTION COMB(N , M)

INTEGER FACT

IF (N .GT.M) THEN

COMB = FACT(N) / (FACT(M) * FACT(N-M))

ELSE

COMB = 0

ENDIF

RETURN

END

INTEGER COMB

PRINT*, COMB(4 , 2)

END
3.
iNTEGER K, M, N

N = 0

DO 10 K = -5 , 5

N = N + 2

DO 20 M = 3 , 1

N = N + 3

20

CONTINUE

N = N + 1

10
CONTINUE

PRINT*, N

END
4.
integer ITOT, N

READ*, N

ITOT = 1

DO WHILE(N .NE. 0)

ITOT = ITOT * N

READ*, N

END do

READ*, N

DO WHILE(N .NE. 0)

ITOT = ITOT * N

READ*, N

END do

PRINT*,ITOT

END
Assume the input is

2

0

3

0

4

5.
INTEGER FUNCTION CALC(A,B)

INTEGER A,B,R, K

R = 1

DO 10 K=1,B

R = R*A

10
CONTINUE

CALC = R

RETURN

END

INTEGER CALC

READ*,M,N

PRINT*,CALC(M,N)

END
Assume the input is

2
5

6.
INTEGER KK, J, K

KK = 0

DO WHILE(KK.LE.0)

READ*, J , K

KK = J - K

END do

PRINT*,KK,J,K

END
Assume the input is

2 3

-1 2

3 3

4 -3

2 5

4 3

7.
INTEGER K, J

K = 2

DO WHILE(K.GT.0)

DO 15 J = K, 3, 2

PRINT*, K, J

15

CONTINUE

K = K - 1

END do

END
8.
INTEGER N, C

LOGICAL FLAG

READ*, N

FLAG = .TRUE.

C = N ** 2

DO WHILE(FLAG)

C = (C + N) / 2

FLAG = C.NE.N

PRINT*, C

END do

END
Assume the input is

4

9.
INTEGER N, K

READ*, N

K = SQRT(REAL(N))

DO WHILE(K*K .LT. N)

K = K + 1

END do

PRINT*, K*K

END
Assume the input is

 6

10.
INTEGER J, K

DO 10 K = 1,2

PRINT*, K

DO 10 J = 1,3

10

PRINT*,K,J

END
11.
INTEGER X, K, M

M = 4

DO 100 K = M ,M+2

X = M + 2

IF (K.LT.6) THEN

PRINT*,'HELLO'

ENDIF
100
CONTINUE

END
12.
INTEGER SUM, K, J, M

SUM = 0

DO 1 K = 1,5,2

DO 2 J = 7,-2,-3

DO 3 M = 1980,1989,2

SUM = SUM + 1

3

CONTINUE
2

CONTINUE
1
CONTINUE

PRINT*,SUM

END
13.
LOGICAL T, F

INTEGER BACK, FUTURE, K

BACK = 1

FUTURE = 100

T = .TRUE.

F = .FALSE.

DO 99 K = BACK,FUTURE,5

T = (T.AND..NOT.T) .OR. (F.OR..NOT.F)

F = .NOT.T

FUTURE = FUTURE*BACK*(-1)

99
CONTINUE

IF (T) PRINT*, 'DONE'

IF (F) PRINT*, 'UNDONE'

END
2. Find the number of iterations of the WHILE-LOOPS in each of the following programs:

1.
INTEGER K, M, J

K = 80

M = 5

J = M-M/K*K

DO WHILE (J.NE.0)

PRINT*, J

J = M-M/K*K

M = M + 1

END do

END
2.
REAL W

INTEGER L

W = 2.0

L = 5 * W

DO WHILE(L/W.EQ.((L/4.0)*W))

PRINT*, L

L = L + 10

END do

END
3. Which of the following program segments causes an infinite loop?

(I)
J = 0

DO WHILE(J.LT.5)

J = J + 1

END do

PRINT*, J

II.
J = 0

25
DO WHILE(J.LT.5)

J = J + 1

END do

GOTO 25

PRINT*, J

III.
X = 2.0

5
X = X + 1

IF (X.GT.4) X = X + 1

GOTO 5

PRINT*, X

IV.
M = 2

K = 1

10
DO WHILE (K.LE. M)

20

M = M + 1

K = K + 2

GOTO 20

END do

GOTO 10

V.
X = 1

4
IF (X.GE.1) GOTO 5

5
IF (X.LE.1) GOTO 4

VI.
J = 1

33
IF (J.GT.5) THEN

GOTO 22

ENDIF

PRINT*, J

J = J + 1

GOTO 33

22
STOP

 4. Convert the following WHILE loops to DO loops :

I.
ID = N

10
DO WHILE(ID.LE.891234)

PRINT*, ID

ID = ID + 10

END do
II.
L = 1

SUM =0

DO WHILE(L.LE.15)

J = -L

DO WHILE(J.LE.0)

SUM =SUM+J

J = J + 1

END do

L = L+3

END do

PRINT*,SUM

5. What will be printed by the following program :

INTEGER ISUM, K, N

ISUM = 0

READ*, N

DO 6 K = 1,N

ISUM = ISUM +(-1)**(K-1)

6
CONTINUE

PRINT*, ISUM

END
If the input is:

a.

9

b.

8

 c.

51

d.

98

6. The following program segments may or may not have errors. Identify the errors (if any).

1.
INTEGER K, J

DO 6 K = 1,4

DO 7 J = K-1,K

 PRINT*, K

6

CONTINUE
7
CONTINUE

END
2.
INTEGER K, J

K = 10

J = 20

DO WHILE(J.GT. K)

K = K/2

END do

END
7. Write a FORTRAN 77 program to calculate the following summation:

8. Write a program that reads the values of two integers M and then prints all the odd numbers between the two integers.(Note: M may be less than or equal to N or vice-versa).

9. Write a program that prints all the numbers between two integers M and N which are divisible by an integer K. The program reads the values of M, N and K.

10. Write a program that prints all the perfect squares between two integers M and N. Your program should read the values of M and N. (Note: A perfect square is a square of an integer, example 25 = 5 (5)

11. Using nested WHILE loops, print the multiplication table of integers from 1 to 10. Each multiplication table goes from 1 to 20. Your output should be in the form :

1 * 1 = 1

1 * 2 = 2

:

1 * 20 = 20

:

10 * 1 = 10

10 * 2 = 20

:

10 * 20 = 200

12. Rewrite the program in the previous question using nested DO loops.

13. Complete the PRINT statement in the following program to produce the indicated output.

DO 1 K = 1,5

PRINT*,

1
CONTINUE

END
OUTPUT:

=****

*=***

=

***=*

****=

14. Complete the following program in order to get the required output.

DO 10 K = 10,___(1)____ ,___(2)___

PRINT*,(__(3)__, L = __(4)__, K)

10
CONTINUE

END
The required output is :

5

6
7
8
9
10

5

6
7
8
9

5

6
7
8

5

6
7

5

6

5

5.9 Solutions to Exercises

Ans 1.

1.
T
F

2.
12

3.
33

4.
6

5.
25

6.
7
4
-3

7.
1 0
50

8.
10

7

5

4

9.
9

10.
1

1 1

1 2

1 3

2

2 1

2 2

2 3

11.
HELLO

HELLO

12. 60

13. DONE

Ans 2.

1. 76

2. INFINITE LOOP

Ans 3.

II , III , IV , V

Ans 4.

I)

DO 10 ID = N , 891234 , 10

PRINT*, ID

10
CONTINUE
II)

SUM = 0

DO 3 L = 1 , 15 , 3

DO 2 J = -L , 0 , 1

SUM = SUM + J

2

CONTINUE
3
CONTINUE
Ans 5.

A) 1

B) 0

C) 1

D) 0

Ans 6

1) IMPROPER NESTING OF DO LOOPS

2) INFINITE LOOP

Ans 7.

REAL SUM

INTEGER K

SUM = 0

DO 10 K = 1 , 200

SUM = SUM + (-1) ** K * (REAL(5*K) / (K+1))

10
CONTINUE

PRINT*, SUM

END
Ans 8.

INTEGER M , N , TEMP

READ*, M , N

IF(M .LT. N) THEN

TEMP = N

N = M

M = TEMP

ENDIF

DO 5 L = M , N

IF(L/2 * 2 .NE. L) PRINT*,L

5
CONTINUE

END
Ans 9.

INTEGER M , N , K , TEMP

READ*, M , N , K

IF(M .LT. N) THEN

TEMP = N

N = M

M = TEMP

ENDIF

DO 5 L = M , N

IF(L/K * K .EQ. L) PRINT*,L

5
CONTINUE

END
Ans 10.

INTEGER M , N , TEMP

READ*, M , N

IF(M .LT. N) THEN

TEMP = N

N
= M

M
= TEMP

ENDIF

DO 5 L = M , N

IF(INT(SQRT(REAL(L)) ** 2 .EQ. L)) PRINT*,L

5
CONTINUE

END
Ans 11.

INTEGER I, J

I = 1

DO WHILE(I .LE. 10)

J = 1

DO WHILE(J .LE. 20)

 PRINT*, I, ' * ', J, ' = ', I*J

 J = J + 1

END do

I = I + 1

END do

END
Ans 12.

INTEGER I, J

DO 10 I = 1 , 10

DO 10 J = 1 , 20

PRINT*, I, ' * ', J, ' = ', I*J

10
CONTINUE

END
Ans 13.

PRINT*, ('*', J = 1, K-1), '=' , ('*', M = 1 , 5-K)

Ans 14.

1) 5

2) -1

3) L

4) 5

1

_869903518.unknown

_923113462.unknown

_923113463.unknown

_923113460.unknown

_869903517.unknown

_869903512.unknown

