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CE317

Computer Methods in CE

Lecture 4(
Taylor Series-Cont.

Use of Taylor series to approximate differential operators:

There are three ways to numerically approximate the first order derivative of a function:

1- 1st order forward finite difference:

Consider the 1st order Taylor series:
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which yields:            
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which can be written as
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(1)


where h is called the interval or step size.

2- 1st order backward finite difference:

If we write the 1st order Taylor series backward, we get:
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(2)

3- 1st order centered finite difference:

The formula can be obtained by adding the sides of (1) + (2) to get:
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(3)

Example:

Use the forward, the backward and the centered difference approximations to estimate the first derivative of f(x)=e2x+1 at x=2 using a step size h=0.2.
Approximation for the second order derivatives can be derived using the following procedure:

Recall the 2nd order Taylor series:
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which can be written as
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or:
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(4)

using (3) in (4), we can express f’’i in terms of fi-1 , fi and fi+1:
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which is the second order centered finite difference. Similar procedure can be used to obtain the second order backward and forward finite differences.

Example:
Given the following data for the deflection y(x) of a beam of length L = 1m and EI = 1 N.m2, estimate the numerical value for the bending moment at the middle of the beam.

	X (mm)
	0
	100.
	200.
	300.
	400.
	500.
	600.
	700.
	800.
	900.
	1000.

	Y(x) (mm)
	0.
	-2.6
	-4.9
	-5.7
	-7.9
	-8.3
	-7.7
	-5.5
	-4.8
	-2.5
	0.
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( Important: This handout is only a summery of the lecture. The student is expected to take detailed notes during the class and refer to the textbook for more examples and discussion.
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