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An elasto-damage constitutive model for high-strength concrete
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ABSTRACT: A constitutive model for normal and high strength concrete is proposed within the framework
of continuum damage mechanics (CDM). The proposed model makes use of the damage effect tensor M, and
the concept of bounding surface for constitutive relations and evolution of damage. Essential features of
concrete such as degradation of elastic properties, strain softening, gain in strength under increasing
confinement and different behavior in tension and compression have been captured effectively. Predicted

results compare well with the experimental results.

1 INTRODUCTION

In recent years considerable research has been
focused on modelling of mechanical behavior of
concrete. The mechanical behavior of concrete is
very complicated and the possible variations in
material characteristics have not been modelled
effectively under various theoretical frameworks
such as non-linear elasticity, rate-independent
plasticity, endochronic theory and plastic fracturing
theory. More recently, the theory of continuum
damage mechanics (CDM) originally proposed by
Kachanov (1958) has been applied to concrete by
different researchers. Highly oriented cracking
occurring in concrete under loading is modelled by
the researchers using scalar, vectorial/tensorial
damage variables.

Continuum damage theory for the general case of
anisotropic damage in a consistent mathematical
and mechanical framework was cast by using
damage effect tensor M by Chow and Wang
(1987a, b), but their work was limited to metals.
The concept of bounding surface first applied to
metals by Dafalias & Popov (1977), was applied to
concrete by Fardis et al. (1983), Suaris et al
(1990), Voyiadjis & Abu-Lebdeh (1993), Abu-
Lebdeh & Voyiadjis (1993), Yazdani & Schreyer
(1990).

In the present work, the effective compliance
matrix [C] is derived by using the damage effect
tensor which takes into account the different
behavior of concrete in tension and compression by
introducing two parameters o and B. Damage
growth is derived using a concept similar to the
bounding surface as proposed by Suaris et al
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(1990). In this method, three surfaces, namely, a
limit fracture surface (which defines the onset of
damage), a loading surface and a bounding surface
are defined. Damage growth would occur only
when the loading surface is outside of the limit
fracture surface.

1.1 Damage effect tensor

Based on the theory of continuum damage
mechanics, the effective Cauchy stress tensor G is
related to the usual Cauchy stress tensor ¢ by
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For the anisotropic damage, the effective stress
may be expressed in a generalized form as
G=Mw): o 2)
where the symbol (:) means the tensorial product
contracted on two indices, and M(w) known as
damage effect tensor is a linear symmetric operator
represented by a fourth order tensor. When the
principal axes of effective stresses ¢ and material
damage during loading are assumed to coincide
with the conventional stresses o, the components of
G may be expressed in the principal coordinate
system as
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One of the simplest forms is to introduce material
damage in the principal directions only (Chow &
Wang, 1987a, b). One obvious criterion for
developing such a generalized form of the damage
effect tensor is that it should be reduced to a scalar
for isotropic damage. Based on phenomenological
evidence and satisfaction of the above criterion,
following damage effect tensor for concrete, M(w),
is developed and expressed in the principal
coordinate system as:
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where @, i = 1,2,3, are the principal damage
components.  The parameters a and P are
introduced to capture the different behavior of
concrete in tension and compression.

It is obvious from (4) that for isotropic damage
when 0; = 0, = 03 = 0, the proposed M-tensor can
be readily reduced to a scalar.

1.2 Effective compliance matrix

Effective compliance matrix for damaged material
in the principal coordinate system is derived using
the elastic energy equivalence concept as proposed
by Cordebois & Sidoroff (1982), who postulated
that the complementary elastic energy for a
damaged material is the same in form as that of an
undamaged material, except that the stress is
replaced by the effective stress in the energy
formulation.  Since the complementary elastic
energy A°(c,0) of an undamaged material (o = 0) is
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The complementary energy of a damaged material
can be expressed as
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where,
C=M":C:M @)

The linear elastic stress-strain equation for
damaged material may be written as
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The compliance matrix, [C], for isotropic materials
in the principal coordinate system is

Il -v —-v
-v 1 -v 9)
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Substituting (9) and (4) in (7), effective compliance
matrix for damaged material in the principal
coordinate system is expressed as

- (1-po,)’

! (l_aml)z(l_ﬁwz)z(l_BwJ)z

612 = 621 = - 2
(I-aw )1 -ao,)1-Bo;)

Cu = FJI = -~ 2 (10)
(l~(10)])(]~(1003)(1~[30)2)

E; - (I_sz)2

= (l—amz)z(l—ﬁms)z(l—ﬁw,)z

623 = 632 = — 2
(I-aw, )] -aw,)1-Pw,)

633 (1—[3033)2

T (—aw,)*(1-Bo,)’ (1-Bo,)?

From (10) it is obvious that the thermodynamic
constraint requirement £, v, = v is satisfied.

1.3 Bounding surface

In order to construct a rational model accounting
for damage growth, concepts are borrowed from
incremental theory of plasticity in general and the
bounding surface plasticity model in particular as
introduced by Dafalias & Popov (1977). Plasticity
bounding surface model as proposed by Dafalias




requires definition of multiple surfaces in stress
space. However, the fundamental surfaces in the
present work are best described in strain-energy
release space, as proposed by Suaris et al. (1990)

f=RR)? -R [b=0 (i
F=(RR)"? -R =0 (12)
f,=(RR)"? -R, =0 (13)

where, f is the loading function surface, F is the
bounding surface, f, is a limit fracture surface
(Suaris et al. 1990). The loading function surface
(H) is defined in terms of thermodynamic-force
conjugates, R;, where,

OA
R =p7——(o;,0) (14)

0w ;

R is an image point on F = 0 associated with a
given point R; on f= 0 defined by a mapping rule

R =bR

i i

(15)

b=R,/(RR)"” (16)
with the mapping parameter b ranging from an
initial value of oo to a limiting value of 1 on growth
of loading surface to coalesce with bounding
surface. R, critical strain energy release rate, is a
parameter of the model and is calibrated to the
standard uniaxial compression test, and is
suggested to be 1.29. R, defines the initiation of
microcracking which occurs at about 40% of the
peak stress as indicated by experimental results, and
it varies with the compressive strength of concrete
as:

R, =2B (04f)) /E, (17)
Damage is hypothesized to accumulate at levels of
strain energy release rate resulting in the loading
surface (f) traversing the limit fracture surface (f,)
and rupture in the damage sense is said to occur
when ‘/ grows large enough to coalesce with the
bounding surface F fixed in the R; space.

It can be argued from the above discussion that
R. should also vary with the compressive strength
of concrete, £, like R,. At this point it seems
appropriate to discuss the role of parameters o and
B. It is true that R, will vary with £’, but with the
introduction of a and P it does not matter that . is
fixed or varying. o and B control the movement of
the loading surface which describes the onset of
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damage or failure, i1.e. higher values of o and B
means faster movement of loading surface and
hence lower peak stress, as it will reach the
bounding surface much earlier than with lower
values of a and B. This makes the model flexible
enough to accommodate normal as well as high
strengths of concrete.

1.4 Damage evolution

The damage growth is determined from the loading
surface, f, as

of
do, = d\—— 18
o, = dhop (18)
With &k = R./b, equation of loading becomes
SR, k) =(RR)" ~ k(@ ,) =0 (19)

where © ,, the norm of accumulated damage is
defined as,

do , = C(do, do ;)" (Cis constant) (20)

Consistency condition df = 0

o
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From (14)
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Substituting in (21)
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Substituting (18) in (20)
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It can be shown that (—af‘ —al—] =1 and for C
OR, OR,

=1




do , = d\

P

(25)

Using (18), (19) and (25) in (24) and solving for dA
yields

ﬂ_ OR, d
d\n = R, 0o, 26
A g m o 0
w, OR, 0w, OR,
Introducing H = —— = damage modulus, it can be
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measured experimentally in a uniaxial compression
test and the same form is assumed for more general
stress paths.
In the present work, H is expressed as a function
of the distance between the loading and the
bounding surface, given by

Ds
(8.,-3)

H = 27)

where D = 2.65 is a constant and < > are Macaulay
brackets that set the quantity within it to zero if the
value is negative. The normalized distance §
between the loading and bounding surfaces is given
by

1
§=1-—

p (28)

8 = 0y corresponds to R, when the loading surface
first crosses the limit fracture surface (Suaris et al.
1990).

2 INCREMENTAL STRESS-STRAIN
RELATIONS

2.1 Elasto-damage compliance matrix

Total form of stress-strain law can be expressed as

g, =C, (0,)o, (29)

The incremental form of Equation (29) is given by

~

“if

de, = C,do, + 0o, do , 30)

k

or
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Cy 0

de;, =C,do, + o, p— BE 3D
x’;, o

de, =4C, 2 32

e, {C,J +c]amk P dk}dc, (32)

or

de, = C;' do (33)

where dA is defined in Equation (26).

where C;“

as defined in Equation (32). Equation (33) is useful
in a stress control testing.

is the elasto-damage compliance matrix

2.2 Elasto-damage stiffness matrix

The constitutive equation for strain control can be
expressed as

o, =D, (0,)e, (34
where
D=C" (35)
Also we need
R = O—W( 36
;= pam, €,0,) (36)
1
pw = 5[8][D][e] (37
dR —%d ﬁlid 38
i 08} 81 O(DJ (‘0] ( )
and
o R,
or, o,
dr o ok, o (39)

SR, dw, 3R,

The incremental form of Equation (34) is given by




do, = D, d Dy L 40
O =L Y E 50, Par, (40)
oD, of
= = 41
do,; {D,J +8’6u),‘ 2R, cﬁ}dsl 41)
or
ds, = D}’ de, (42)

where d\ is defined in Equation (39), and D;’ is

the elasto-damage stiffness matrix as defined
explicitly in Equation (41). Equation (42) is useful
in strain control testing.

3 APPLICATION OF PROPOSED ELASTO-
DAMAGE MODEL

3.1 Uniaxial compression

The strain energy density pA for uniaxial
compression is given by

[0}
p/\z%[d 0 0][6] g (43)

Substituting for the compliance [CNT ] and setting o

= 0 (as it is used primarily as a parameter for
matching peak strengths in tension testing), one
obtains
2 2
c 1-PBo

pA = 2 2
2E, (1-Bo,)" (1-Po,)

The thermodynamic relation

d(pA)

g, = P (45)
yields
6 =¢FE (1-Bo,) (1-PBow,) (46)

e (]‘Bml)2

Substitution of (46) in (44) yields
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alea (1—[30)2)2 (]*B(D3)2

pw = (47
2 (1 - B(D 1 )2
Using the relationship
d(pA
R = _9eh) (48)
oo,

one obtains

_ BEIZEO(I_Bmz)z (l—ﬁw,;)z -

R, = 0
l (1—[3(1),)3
(since R; £ 0) (49)
g, BEEL1=B0, ) po) 0)
(l——B(Dl)
R} _ B“"IEU (]“Bmz) (l'B(D;) (51)

(1-Bo,)’

From symmetry, @, = 03 = ® and @, = 0 by virtue
of Equation (49), yields

R, = R, = BE?ED(I_BC‘))S (52)
and

(RR)"™ =2BelE, (1-Bo)’ (53)
and

d ||, L L

&b & 4

Differentiating R, with respect to o, and € and
substituting along with (54) into (39) yields

 22PeE, (1-Po)’ ds,
" (H +38%2E, (1-Bo)?)

A
do, = d){a&} (55)

Finally, Equation (41) yields incremental stress-
strain relationship for strain control testing as




B(BelE2 (BW)® ]
(H +3p%62E, (BW)?))
(56)

do = [1; (BW)* -

where BW = (1-fw).

Similarly, it can be shown that proceeding in a
similar way incremental stress-strain relationship
for stress control testing can be expressed as

1 8B%c’ / (BW)" * I}
de, = E. (B’ + [ e j do
CE,(BW)®

(57)

3.2 Uniaxial tension

Following the same logic as in the case of uniaxial
compression, it can be shown that for strain control
testing,

4(a’elE? (AW)ZJ
gI

=| E, (4AW)* -
do ( - (A1) (H +a’elE)

(58)

where AW = (1-aw), and for stress control testing

1 40’ | EX (AW)®
de, = >+ =2 o (4W) do
E,(AW) (H 3(1202J
E, (4w)*

(59

3.3 Biaxial compression

Predictive ability of the proposed elasto-damage
model for a multi-axial stress path is investigated
for the biaxial stress state defined by 5, = 5, = o.
Proceeding in a manner analogous to the uni-
dimensional stress state, incremental stress-strain
relationship for strain control testing can be
expressed as

E,(BW)  8p%61E2 (BW) /(1- v)*
do = -
a-v) [ u 262.851%)
Tty
X d€| (60)

and for stress control testing

(1-v)  88°c*(1-V)’/EX(BW)®
E, (BW) [ 6B (1- v)J
S E, (W)
x do 61)

4 DETERMINATION OF REGRESSION
COEFFICIENTS

The parameters o, B are functions of initial
modulus of elasticity, E, uniaxial compressive

. - . /
strength, f, and normalized strain invariants, —-
g}
J, .
& —+. Here, & and e; represent the minor
(33

principal and deviatoric strain, respectively. The
suggested forms of a, B are as follows:

1
aZaO(fc,’Eo)+al(f<:l’Eo) !
€

3

J

2
2
€3

+a, (f,E,)

’ Il JZ
+a; (/) E,) = 5 (pathdependent)

3 3
(62)
or

a=a(f E,) (path independent) (63)

[
B :Bo(fcl’Eo) + Bl(fc,’Eo) _L
€3
’ J2
+ Bz(fcan) 3
€3

~ 11 JZ
+B5(f) L) Pty (path dependent)
€3

3

(64)
or
B=BE,) (path independent) (65)

where,




— ’ 2 nl
o, =, ta,flra ft vok,

(i=0,1,2,3) path dependent (66)
B, =B, +B. S+ B,}fc’Z +BLr,
(i=0,1,2,3)
a =0, o f + azfc'2 + a}fc,3
path independent 67)

B = Bo + Elfc, + Bzfclz + E}fc,3

These parameters were calibrated by regressing
against experimental o—¢ data for different £/. The
range of £, used in regression varies from 4,000 psi
to 17,400 psi, and is listed in Table 1. Stress paths
used in regression are listed in Table 2.

Table 1. Range of f used in regression.

/. (psi) E, (10° psi) v
4000 3.605 0.19
9434 6.023 0.19

13062 6.444 0.19

17416 7.126 0.19

Table 2. Stress paths for determination of a, f8.

o)/c; fora ai/o; for B
-1 0

-0.25 0.2

-0.125 0.5

-0.1 0.8

-0.075 1.0

-0.05

-0.025

Regression was carried out in two steps as
illustrated by Desai & Siriwardane (1984). In the
first step, for a particular £’ and F,, a or B is found
out to give the peak stress for different stress
ratios. Then this data is regressed using the
proposed form of o or f to find out o, o, 0, a3
or Bo, B1, B2, Bs. At the end of step 1 we have a set
of o’s and B,’s, where i = 0,1,2,3.

This process is then carried out for all the listed
/.. The sets of a/’s and B/s are then regressed
using the proposed functional forms of o;’s and f,’s
to obtain o, G, O, ti OF B, Ba, B, Pi.

Final form of a’s, B,’s is as follows:

¢ o for path-dependent stress states

a, = - (1989E +01) + (1788E —03) £,
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— (56441 —08) f* + (4758 ~0T)E,

o, = — (3495 +01) — (1445E - 04) £
+ (4415E ~09) f* + (4593E - 06) K,
(68)
o, = (2825E +01) —(2561E - 03) f
+ (8123E-08) f% - (6864E - 0T) E,

o, = (447E +01) + (4331E - 04) f
~ (1398F — 08) £ —(6.109E — 06) I,

o o for path-independent stress states

& = (LL1GE +01) — (L153E — 03) £/
+ (3707E - 08) 7% ~ (1514E - 07) E,
(69)

o [ for path-dependent stress states

B, = — (4229F - 02) — (2869K —06) 1/

+ (6006F — 11) £ +(9.741F — 09) k£
B, = - (6914E —02) + (5829E - 006) f,

- (L79E - 10) f/? + (2198£ - 09) I,

(70
B, = (6971F —01) — (3.09L - 05) f
+ (LI07TE - 09) f/* —(6163E - 08)E_

B, = - (3841L - 01) + (165TE - 05) f,

— (5987k —10) f* + (3455 - 08) [,

¢ [ for path-independent stress states
B = (2516E —01) — (1978F —05) f.!
+(6421E - 10) £/* —(1152E - 08) [,
()

Depending on the state of stress (o1, ©2),
combinations of o, B are proposed as shown in
Table 3.

5 COMPARISONS WITH EXPERIMENTAL
RESULTS

Results predicted by the model discussed in the
earlier sections are verified for uniaxial and biaxial
loading conditions by comparing them with the
available experimental results. A strain control
program is used for plotting stress-strain curves




Table 3. Combinations of a, f.

State of « B
stress
[¢]] > 0, a(fc”Eu) 0
0'220
61> 0, 1 B(L.E,)
02 <0 Ot(fc',Ea,g—',
3
g 1‘.*;1_2]
e; e, e
0’1SO, 0 , ]l
6 <0 BB
Sy L*ﬁj
e; ey ¢

for different loading conditions.

For the case of uniaxial compression, stress-
strain curves are plotted for three different
concretes (concrete A, f' = 4000 psi (Fig. 1);
concrete B, £’ = 9434 psi (Fig. 2); concrete C, f.' =
17,416 psi (Fig. 3)). Comparison with experimental
results (Wee et al. 1996, Wischers 1978) shows
that the peak stress obtained analytically matches
with the experimental results quite well, but the
strain is somewhat smaller than the experimental
values for concrete A and B. Also, the predicted
stress-strain curves show less ductility for concrete
A and B, while for concrete C the curve matches
quite well with the experimental result. This can be
attributed to the absence of plastic strains.
Additional plastic strains will shift the curves to the
right, making the strains match with the
experimental results. Increasing brittleness and
decreasing ductility have been predicted reasonably
well as can be seen for concrete C.

6 0DE+03 ——— ..
Uniaxial Comp. (Anal.)

— — —-Biaxial Comp. (Anal.)

--Peak Stress in Biaxial Comp.(Exp )
—————— Uniaxial Comp.(Exp.)

5 00E+03

400403

300E+03

Stress ( psi)

200E+03

100E+03

0.006+00 £ ety f e ] ——t
00UE+0D 500E-G4 100E.03 {S0E-3 200E-03 250603 300E-03 350E-03 4 00E-03

Steain {in.fin. )

Figure 1. Stress-strain curves for uniaxial and
biaxial compression (f." = 4000 psi).
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1008404

800E+03
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400E+03

— —— -Biaxial Comp. (Anal.)
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--: Uniaxial Comp_(Exp)

200403

[’ —— Uniaxial Comp. (Anal )

'

0 00E +00 + - 4
0DOE+00 500E-04 100E 03 1.50E-03 200E-03 250E-03 300E-03 350E-03 400E-03 4 50E-03
Strain { in.fin, )

Figure 2. Stress-strain curves for uniaxial and
biaxial compression (f;’ = 9434 psi).

2508404 — Uniaxial Comp. (Anaﬁ‘
— - -Biaxial Comp. (Anal )

SN | Uniaxial Comp. (Exp )J

200E+04 ’ h T T

1 50E404

Stress ( psi)

100E+04
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OO0E+00 ¥ - e ) e e
000E+0 500E-04 1 0DF 03 1.50E-03 2 ADE-03 2 5OE 03 3.00E-03 3 S0E-03 4 00E-03 4 50E-03 5 00E.03
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Strain ( in.fin. )

Figure 3. Stress-strain curves for uniaxial and
biaxial compression (f.’ = 17,416 psi).
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Figure 4. Stress-strain curves for uniaxial tension.

For the case of uniaxial tension, shape of the stress-
strain curves (softening in post-peak zone), Figure
4, compares well with the experimental results of
Gopalaratnam and Shah (1985).

For the case of biaxial compression, comparison
with experimental results of Kupfer et al. (1969),
Figures 5-7, indicates that the predicted peak stress
is somewhat higher, but is in the range as predicted
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Stress / f'c

Analytical
—————— Exp.(Kupfer)

Stress / fc

Figure 5. Biaxial strength interaction curve for
concrete (f.’ = 4000 psi).

Stress / fc

Analytical
Exp.(Kupfer)

Stress / fc

Figure 6. Biaxial strength
concrete (f’ = 9434 psi)

Stress / fc

| anaipeal

Stress / f'¢

Figure 7. Biaxial strength interaction curve for
concrete (f;’ = 17,416 psi)
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by Linhua et al. (1991). Biaxial strength interaction
envelope is plotted for all three concretes, which
compares very well with the envelope as predicted
by Kupfer et al. (1969).

6 CONCLUSIONS

An elasto-damage bounding surface model for the
monotonic behavior of normal and high strength
concrete is developed in this paper. A generalized
compliance matrix is developed in the principal
coordinate system by introducing damage effect
tensor M(w), which takes into account the different
behavior of concrete in tension and compression by
introducing two new parameters o and f.

The stress-strain curves and biaxial strength
interaction envelope presented in this paper
demonstrate that the proposed model predicts the
behavior of concrete under multiaxial monotonic
loading adequately. The proposed model predicts
the essential features of concrete quite well except
for volumetric dilatation. Since plastic strains are
not considered here, predicted stress-strain curves
are stiffer than experimental curves. It is therefore
recommended to include the effect of plastic
deformation in modelling the behavior of concrete.

In order to make the model general and
applicable to real three dimensional problems, more
triaxial data needs to be incorporated in
determining the regression coefficients. Work is in
progress in this direction.
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