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Abstract

This paper presents a three dimensional finite clement code DAMAG3D for nonlinear analysis of concrete type
materials modeled as elastic-damage. The CDM model adopted is the onc as proposed by SUARIS W, OUYANG
C. FERNANDO V. M. Damage model for cyclic loading of concrete. J Engng Mech. American Society of Civil
Engineers 1990: 116(5): 1020- 35. for monotonic and cyclic loading of concrete structures. Code DAMAG3D is
applicd to simulate response of concrete under monotonically increasing load paths of uniaxial compression,
Brazilian test, strip loading and patch loading, with reasonable correlation established with experimental results and

results from other nonlinear constitutive models. « 1998 Elsevier Science Ltd. All rights reserved.

I. Introduction

Continuum damage mechanics (CDM) modeling has
given new impetus to the constant search for improve-
ment in constitutive modeling of complex bimodular
materials like concrete [1,2]. With sufficient insight
gained into CDM modcling for both brittle & plastic
fracture [3,4]. research has been initiated into incor-
poration of CDM constitutive models into a finite el-
ement implementational  scheme for solution of
problems of engineering interest [5-7]. Chow and
Wang in refs [5,6] have considered finite element for-
mulation of CDM models simulating ductile fracture,
with Ghrib and Tinawi [7] focussing on the evergreen
problem of concrete gravity dams.

This paper is a 3-D finite element formulation for a
concrete like material whose behavior is simulated by
the CDM model as presented by Suaris, Ouyang and
Fernando [3]. The model assumes behavior of concrete
to be elastic-damage, with plastic behavior ignored.
The model has several positive features, including (i)
the ability to accumulatc damage leading to failure
under cyclic loading; (ii) incorporation of influence of
stress induced anisotropy by consideration of damage
as a vector; (ii1) use of strain energy release ratc space
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for description of damage evolution (in contrast to
stress spacc); and (iv) simplicity of form without
recourse to an exorbitantly large number of calibration
constants.

2. Elastic potential A

An elastic complementary free energy potential func-
tion A is assumed in the form
A :A(O',,‘,(D,‘), (l)

where o;; = stress tensor and o, the damage veetor in
a principal framework. The incremental quantity pdA
(p = mass density) is then given by

oA , JA
pdA = P%;d bfo; + P@‘/“h 2)

which yields the constitutive relations in terms of con-
jugate variables €; and R; as :

oA

i =P ,( (3&)
00,/
IA

R = p—,(——. (3b)
Jo;

where €; is the classical strain tensor and R; is inter-
preted as the strain cnergy release rate associated with
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the damage process. The components of the strain
energy release rate vector are generally referred to as
the force conjugates of the damage components.

The use of the Clausius-Duhem inequality in terms
of the complementary free energy function leads to the
condition

R, > 0. )

3. Bounding surface damage model

In order to construct a rational model accounting
for damage growth, concepts are borrowed from incre-
mental theory of plasticity in general and the bounding
surface plasticity model in particular as introduced by
Dafalias and Popov [8]. The Dafalias-Popov plasticity
bounding surfacc model requires definition of multiple
surfaces in stress spacc. However, the fundamental sur-
faces of the Suaris model are best described in a strain
energy release space:

[ =(RiR)* =R /b=0 (5)
l":(R,-R,)'/sz(.:() (6)
fo = (RiR)'*—0.08 =0 (7

Here, /'is the loading function surface, F is the bound-
ing surface. f, is a limit fracture surface (Fig. 1), R; an
image point on F = 0 associated with a given point R;
on f = 0 defined by a mapping rule

R/ = th (8)

h= R J(RR) 9

with the mapping parameter » ranging from an initial
value of oo to a limiting value of 1 on growth of load-
ing surface to coalesce with bounding surface. R, is a
paramcter of the model, and can be calibrated to the
standard  uniaxial compression test.  Suaris  has
suggested the use of R.=0.63, but obviously this par-
ameter should vary as the concrete compressive
strength /", varics.

Damage is hypothesized to accumulate at levels of
strain energy release rate resulting in the loading sur-
face *f" traversing the limit fracture surface ‘f,’, and
rupture in the damage sense is said to occur when the
/7 surface grows large enough to coalesce with the
bounding surface F fixed in the R; space.

4. Damage incremental stress-strain law

Consider the decomposition of the stress and strain
tensor into their principal values (i.e. positive and

BOUNDING SURFACE, F= 0

LOADING SURFACE, f = 0

LIMIT FRACTURE SURFACE fy=0

Ry

Fig. I. Ilustration of bounding. loading & limit fracture sur-
faces in 2-D.

negative eigenvalues) given by
o=c"+0" and e€=¢€¢"+¢€ (10)

The complementary free-cnergy function pA and the
strain energy function py may be written as

I
pA =§(Q+C/ ot +0 Cyo) (1)

1
p\l’:§(£+Dl§++§'DIl§7) (12)

where C; and Cy; are the compliance matrices for ten-
sile and compressive stresses, respectively, and D; and
Dy, arc their respective inverses such that:

D, =[C]”" and Dy =[Cy]" (13)

Expressions for Dy and Dy are included in the
Appendix.

The decomposition of the elastic potential into ten-
sile and compressive components enables the modeling
of the different crack mechanism in tension and com-
pression. The compliance matrices as proposed in
ref. [3] may be written as

1
(1-2@)) -V -V
|
Cr=—| —v gy -V (14)
E,, (1—x@>)
_ _ |
v v (1-xmz)
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—v ~v
(I -y Nl—>) (-0 -a3)

i
(1—Ba: )1 —Peoy)
|

Ciy=--1 T e
ﬁ,, (1—@ {1 -

v
(1-@:)(1-a3)

B i
(I =Po )1 —for)

v
(l—@)(1-a;)

t
(1—Pa; )1 —fo-)
(15)

iy
(I—@:)(1—ay)

where  E, = modulus  of elasticity and v = the
Poisson’s ratio of the uncracked concrete: and oy, .,
oz are the components of damage in the threc princi-
pal directions. The form of compliance matrix C; is
based on the assumption that crack growth in a par-
ticular plane increases the flexibility of the material
along an axis perpendicular to it but has no influence
on the in-plane flexibility. The parameters o and B are
introduced to account for influence of stress intensity
factors and the tortuosity (or cross-effect) of cracks, re-
spectively.

From the strain cnergy function of Eq. (12), one
may find the constitutive relations in total and incre-
mental form as

)

o, = Pil (¢;. Dy(w,)) = Dl + Dle (16)
ac; 0 i v

do, = Dlde! +D{lde; +Djc) +dD]le; . (17)

In finitc eclement methods, usually the primary
unknowns are the displacement or incremental displa-
cement and the current strains and incremental strains
can be determined subsequently. However, to calculate
increment of stress from Eq. (17), one needs the
damage evolution equations for computation of Dy,
D,. D and dDy,.

5. Damage evolution equations

The damage growth rate is hypothesized to be con-
ceptually similar to increments of plastic strain as in
associative theory of plasticity. Using the normality
condition. increment of damage is expressed as

of
do; = dlL — 18

’ IR, (%)
where L is a loading index chosen to satisfy R@;>0
(in a manner similar to G,-/-(Icf».»>0). This yields

df Lo .
[ =—=——-dR 0 ading d
d H ™ HR dR; > (loading) (19a)
dL =0 (unloading) (19b)

and # = damage modulus. Reducing (19a) to a uniax-
jal test, the damage modulus / = dR/dw can be cali-
brated similar to the calibration of the plastic modulus
as introduced by Dafalias and Popov {8] in the bound-
ing surface theory of plasticity. Suaris, Ouyang and

Fernando [3] used a regressed hyperbolic form for the
damage modulus

H=H® =D—0w— S _ (20)

< & — 0>

where D = 2.65. §,, = initial distance between the
limit fracture surfacc and the bounding surface and
& = distance between the loading and bounding surfa-
ce = 1 —1/b (Fig. 2).

With the assumed form of / as given by Eq. (5). 9/
aR,= R/(RR)'? and dL = RdR/[H(R.R)"*]. Thus,
increment of the damage vector requires knowledge of
increments of strain energy release rate (dR;) and cur-
rent strain energy release rate vector R;. Using the elas-
tic complementary frec-cnergy function A and Ry
relationship, one obtains

oA 1 aC! ac!
R LO)=p—=2 + U5t o T
o @)=pal=s (G' preslll Rl Sl

(21
oCt aC!
dR, ={ o} —Ldo! + o —do;
C / Jy; /
1 a [oCk
+ i +
~lof— oG
+2( ' i)m,:l:a(m Ao,
P i)C,’-’," )
i | o ([(I)/O',
0w | doy
(22)
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LIMIT FRACTURE
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Fig. 2. Schematic of normalized distance & in R-deviatoric
plane.
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includes deacription of geometry, material properties. and boundary conditions
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Fig. 3. Flow chart of DAMAG3D.
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6. Alternate representation of damage growth

In order to obscrve the model’s ability to predict
strain softening. it is essential to recast the increment
in damage. do,. in an alternate form. Khan er al. [9],
in a recent contribution have shown that for a strain
control test,

Ry

TR, e,

o oR
IR, o, 3R,

dL = (23)

where do; is as given by Eq. (18).

The phenomenon of strain softening is demonstrated
for the case of uniaxial compression. For the Suaris
model,

.

5
- 2
PA = 3BT~ Pl — Por) o
with
R, = Ra(c, @) = — P (254)
- 2Ey(1 — Bw2) (1 — Pws)
Ry = Ry(G, ®) = — Bo” (25b)

2E0(1 — B@a)(1 — Poy)™

where due to symmetry w,=w; = and @, =0.
The loaded direction corresponds to the l-coordi-
nate. The total stress—strain relation is given by

o = Epgi(1 — Bo)(] — fos) (26)
Using Eq. (26) in (25).

Ry == (27a)
R, = Perfutl = Pos) (27b)

From Eq. (5)

[ord o LA 28)
v "' B A (
and from Eq. (27)
[OR
T —000 (29a)
L()(D,‘
[ORT Ber Ey

—loo - == 26
| o, | [ ( 2 ] (29b)
F9R-] 2 Zb‘
IR [o Ji_uo] (29¢)
L'()(1),'_ 2
[OR] [0 0 0] (29d)
Loe; | -
[ORA IR,
—_— = Dy — — | — 200
e } [Be) Eo(1 — o) 0 0] [aa, ] (29¢)

Carrying out the appropriate matrix multiplications as
defined in Eq. (23) results in

2Bey Eo(l — Po
_ f[al 0(‘,-», f l(/g] (30)
(11 +15)

dL

Ref. [9] also delineates the form of incremental stress
strain law as

do; = D g, 31

o
where DY is the clasto-damage tangential stiffness
given by
) e v aR
dDin d/ TR

, dR, g,
DY = D,y + €yt i TR (32)
im in ' f)(l)q f)Rq af IR, df

IR, dwy 1R,

where D,,, matrix is detailed in the Appendix.
For the case of uniaxial compression, the only essen-
tial term of the Dj,, matrix is

D, = Ey(l — Bo:)(1 — Pws) (33)
with
oD
[‘)—'] = BE)0 — (I — Bw) — (1 — Po)] (34)
0w,

substitution of Eqgs. (33) and (34) into Eq. (31) leads to
the incremental o — € law

2B} Eo(] — Po)’

Bk

H+ "

do = | Eo(1 — po)* — de, (39)

7. Program DAMAG3D

A computer codc DAMAG3D has been developed
for the clasto-damage analysis of three dimensional
structures using a twenty noded serendipily isopara-
metric element. Three degrees of freedom are specificd
al cach node. corresponding to threc displacements at
that node. Stresscs, strains and change in the charac-
teristics of the material arc monitored at Gauss inte-
gration points within cach element. Any Gauss point
may remain elastic or undergo damage or fail. Normal
integration scheme is employed using 3 x 3 3 inte-
gration rule.

The program is written in a FORTRAN code. and
is expressed in a modular form consisting of various
subroutines called from the main program and from
within themselves. It has been written along the format
of two-dimensional clasticity and plasticity programs,
ELAS2D & PLAS2D. as developed by Profs Hinton
and Owen in their classical texts on finite clement
modelling [10,11], with extensions made to three-
dimensional analysis wherever deemed appropriate.
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The major subroutines and their functions are out-
lined in the flow chart shown in Fig. 3. In addition to
incorporation of three-dimensional features in subrou-
tines such as LOAD3D and INPUT, the two subrou-
tines RESIDU and STIF3D reflect the most significant
changes by virtue of incorporation of a new material
model.

Subroutine RESIDU essentially corrects the stresses
at cach Gauss point to correspond to the updated con-
stitution of the material. It then proceeds to establish
the unbalance of forces in cach element resulting from
the correction of stresses at each Gauss point. This
unbalance is the difference in the consistent load vector
(expressed in terms of external forces) and the equival-
ent nodal forces (expressed in terms of internal stres-
scs). This unbalance is reduced in successive iterations
to a tolerable value in order to meet the desired degree
of convergence which is ensured in subroutine
CONVER.

Subroutine LINEAR passes to RESIDU linearized
increments of stress and strain assuming elastic beha-
vior. Subroutine EIGEN (called from RESIDU) then
transforms the global stress and strain increments to
principal form, ordering and scparating tension and
compression components. Subroutines DAMAGE and
DMATRX (both called from RESIDU) are used as
components in an internal iterative loop to evaluate
increment in damage and update the constitutive
matrix in order to correct the increments of stress in a
principal framework. This internal iterative loop is ter-
minated on attaining increments of damage and strain
energy release consistent with increments of  stress.
After updating of total stress and strain tensors in
principal framework, the stress tensor is then trans-

y?

o

37.5mm

_1325mn |

26.5mm

37.5mm

b |

Fig. 4. Plun view of one quarter of concrete cylinder.

formed to a global framework for use in evaluation of
equivalent nodal forces prior to computation of re-
sidual or unbalanced forces for each clement.

8. Finite element predictions and example verifications

In order to verify the predictions based on the CDM
model of ref. [3], four problems are selected for which
experimental results and/or predictions corresponding
to alternative models are available for comparison.
The problems selected include uniaxial compression
test, Brazilian test, concentric strip, and patch loading
of rectangular prism. Results are presented in terms of
ultimate load. stress strain response curves and
damage topography in terms of damage contours.

Calibration parameters o and 3 were taken as 4 and
0.1 as recommended in ref. [3]. All parameters of the
model (R.. D, o, B) are unit biased, i.e. they are to be
used in conjunction with the inch pound system.
Results however are presented in the metric unit sys-
tem.

8.1. Example 1: Uniaxial compression test

A standard concrete cylinder of diameter 75 mm and
of height 100 mm is subjected to uniaxial compression.
Utilizing triaxial symmetry, one eighth of the cylinder
is used and discretized into eight isoparametric cl-
ements (Fig. 4), cach of which contained 27 sampling
points (Gauss points or integration points) according
to which a total of 27 x 8 = 216 sampling points are
contained within the part under consideration. The
compressive  strength. modulus  of elasticity and
Poisson’s ratio were taken as 38.6 MPa. 32.4 GPa and
0.19, respectively. The boundary conditions are incor-
porated to reflect three planes of symmetry on which
the nodal displacement perpendicular to the plane of
symmetry is restrained and only the tangential displa-
cements are allowed. Moreover. nodes located along
the line of intersection of the two vertical planes of
symmetry are allowed to move freely only along the
linc of intersection.

Although here the compression test is treated as a 3-
D problem, it is essentially a 1-D problem where all
the Gauss points experience uniform displacement.
stress and strain. The load P has been applied incre-
mentally in terms of uniform stress o such that
P = oA, where A4 is the arca of the cross section. It
has been found that P, =167 kN compared to the
corresponding experimental value of 176 kN. Duec to
symmetry, only one independent component of
damage ®>=m3=w is non-zero and which is a mono-
tonically increasing function of the applied stress
during loading. The plot of damage vs normalized
applied stress is shown in Fig. 5.
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Fig. 6 shows the ability of the alternate formulation
approach to model the phenomenon of strain soften-
ing. Results for both strain control and stress control
are echoed, with the strain softening segment being
sensitive Lo the form of damage modulus H chosen i.ec.
the magnitude of D in Eq. (20). A form of D can be
chosen to vary with the concrete compressive strength
[’ This variation may be calibrated to obtain the best
fit to experimental results of post-peak softening for
normal and high strength concretes.

8.2, Example 2: Braczilian test

A concrete cylinder of length 300 mm with diameter
D = 150 mm is placed with its axis horizontal and sub-
Jected to a line load spread over a width of D/8 to
simulate the loading conditions of the Brazilian test,
see Fig. 7. Material properties are specified as: com-
pressive strength f'.=32 MPa, modulus of elasticity
E =324 GPa, and Poisson’s ratio v = 0.2. The
Brazilian test has been analyzed numerically by
Resende [12] as a two-dimensional plane strain pro-
blem using a 2-D CDM model. Due to symmetry, only
one cighth of the cylinder is investigated and discre-

300mm _

T

. 150mm__—{

\
\

7Smm

Fig. 7. Finite element mesh of cylinder for Brazilian test.
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Fig. 8. (a) Damage distribution based on CDM model of
ref. [3]. (b) Damage distribution based on CDM model of
ref. [12].

tized into 27 isoparametric elements, each of which
contained 27 sampling points to yield a total of
27 x 27 sampling points where stresses and strains are
monitored.

The load has been applied incrementally until failure
occurs. The value of the total accumulated load at
which the last increment is converged is referred to as
the failure load. For the Brazilian test. the failure or
ultimate load P, =235 kN as compared to Py =181
kN of Resende [11]. The damage contour patterns are
shown in Fig. 8 and as anticipated, the maximum
damage occurs just beneath the applied load and
diminishing rapidly toward the center. Fig. 8 reveals
that although the extent of damaged zone is almost the
same for both Resende [12] and predictions based on
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Fig. 9. Finite element mesh for concrete prism.

ref. [3] which is localized into the upper left region. the
damage contour pattern corresponding to  Suaris
damage model is showing symmetry about the center-
line which is in contrast to that exhibited by Resende’s
model.

The Brazilian test is often used to predict the direct
tensile strength of concrete as given by [ =2Pu,/rLD,
where L and D arc the length and diameter of the
cylinder, respectively. Based on the results obtained
here. the tensile strength /7 is calculated to be 3.32
MPa which is nearly 0.1 f’.. This value affirms the
maintenance of the ratio f7/f'. for the Brazilian test
stress path as a consequence of the parameter o cali-
brated using the stress path described in a direct ten-
sion test.

8.3. Example 3: Strip Loading on « rectangular prism

A concrete rectangular prism of square cross scction
200 mm x 200 mm and of height 400 mm is subjected
to a strip loading of width 100 mm as shown in Fig. 9.
Duc to symmetry in gcometry and loading conditions,
one ecighth of the prism is considered to model the pro-
blem together with the appropriate boundary con-
ditions along planes of symmetry. Consequently, the
part  under  consideration is ol  dimensions
100 mm x 100 mm x 200 mm which has been discre-

tized into four elements, cach of which contained 27
sampling points. Accordingly, 27 x 4 = 108 sampling
points are available to describe the stress and strain
distribution within the body. Uniaxial compressive
strength concrete 7 is taken as 38.6 MPa with mod-
ulus of clasticity £ = 32.4 GPa. To maintain sym-
metry. displacements perpendicular to the plane of
symmetry arc restrained. After incrementing the uni-
form applied load, the ultimate load was found to be
557 kN as compared (o the predictions of Gonzalez ef
al. [13]. who solved the same problem based on a 3-D
plasticity model and found the load to be 562 kN. In
both models the predicted ultimate loads are little bit
overestimated as compared to the experimental value
of 515 kN. The damage distribution on the planc and
across the depth is shown in Fig. 10 where damage is
noted to occur only in quarter zones adjacent to the
top and bottom of the specimen. Also, it is noticed
that damage (in plan) is maximum toward the center
and decrcases as one moves away.

8.4. Example 4: Patch Loading on a rectangular prism

A concrete rectangular prism of dimensions similar
to the one used in Example 3 is subjected to a con-
centric patch loading as shown in Fig. 11. Utilizing
symmetry of geometry and loading conditions, one
fourth of the prism is considered to model the problem
together with the appropriate boundary conditions
along planes of symmetry. The part under consider-
ation is of dimension 100 mm x 100 mm x 400 mm,
discretized into cight elements. cach of which con-
tained 27 Gauss sampling points.  Accordingly,
27 x § = 216 sampling points are available to describe
the stress and strain distribution within the body.
Material properties are specified as:  compressive
strength /.= 28.8 MPa, modulus of elasticity £ = 25.4
GPa and Poisson’s ratio v = 0.17. To maintain sym-
metry, displacements perpendicular to the plane of
symmetry are restrained. Behavior of the prism is stu-
died using stress-controlled conditions by applying a
patch load of uniform intensity throughout the loaded
area.

Sampling points at the top and bottom of the prism
exhibit a triaxial compressive state of stress with domi-
nant components being in the loaded direction towards
the center of the prism. These stresses tend to reduce
as one moves away in the horizontal and vertical direc-
tions. In other layers of sampling points, compression -
tension -tension states of stress arc observed. It is this
combined tension compression statc that leads to
accelerated damage, resulting in average compressive
stresses at ultimate load of lower magnitude than in
the casc of uniformly compressed prisms. The ultimate
load was found to be 359 kN as compared to 323 kN
predicted by Gonzalez ¢ al. using an clasto-plastic
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model [13] and 314 kN by Niyogi [14] obtained exper-
imentally. Damage is initiated at about fifty percent of
the failure load.

9. Conclusions

A computer code DAMAG3D has been written to
model  behavior of concrete under monotonically
increasing loading, using a CDM model as presented
by Suaris ¢t al. [3], where concrete is treated as a
bimodular degraded material. The finite element code
is developed using the format standardized by Profs.
Hinton and Owen in their classical treatment of pro-
blems of clasticity, elasto-plasticity and viscoplasticity.
In contrast to elasto-plasticity, the software coding for
an clasto-damage media requires introduction of an
extra internal iterative loop in order to establish a con-
sistent incremental set of damage, strain cnergy release
rate and stress variables. Results are obtained for non-
lincar response of concrete under stress paths of uniax-
ial compression, Brazilian test, strip loading and patch
loading of prisms, and comparisons to other models
and cxperimental values indicate reasonable corre-
lation.

The CDM idealization forming the basis of the com-
putational model presented is described by loading and
bounding surfaces in strain energy release rate space
(in contrast to stress space of elastoplasticity) and uses
a parameter R, that essentially characterizes the size of

200mm

\

Plane of
Symmetry

200mm

PATCH LOADING ON QUARTER PRISM

Fig. 11. Finite clement mesh for conerete prism under patch
loading.

the bounding surface. Numerical experiments indicated
that a need exists to obtain a phenomenological re-
lationship between R, and the compressive strength of
concrete /.. as the value of 6.63 suggested in [3] was
found to be limiting.
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Appendix A

Following are the elements of the Dy matrix (3 x 3):

(1 — o)1 = vi(l — 20)(1 —30)) .

Di(l.1)= y )
D,(1.2) = V(1 — o )(1 —cm::)(l + V(1 — 2m3)) .
Dy(1,3) = Y 2@ “0‘“:'3)(' vl - o)
D, 1) = v(l — o X1 — 0((1/)41)(] +v(l — um}))lz},
D, (2.2 = (Lo 2e) - "z“AV s~ owy)
D,(2.3) = v(l — o) (1 — uu::)(l +v(l — mn]))E“
D3, 1) = YL et “";ﬂ“ vl aen)
D,(3.2) = YL el = fx":)“ o)),
D3 3) = Lo eedl = "”L- o)1 — o)
where

A=1— vl — 2@ )] —203)+(1 — oo )] — 2®;)
+ (1 — oo X1 — a2m>))

—2v(1 — am (1 — aw)(} — 2w?)

The elements of the (3 x 3) Dy matrix are given by:
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D (1,

D1,

D (1,

Dy (2,

D (2.

D2,

Dy (3,

D (3,

D,;(3.3) = (1 —;)" (] —a>)” W\“(l—flitm)(lflimg)(lfliml)’)E”'

where

_ (oD —a: ) 4+ v (1P )| —Be)
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(1—@) (1 —Pan )t —wr)

(-1 —(xhilA\'](l—[im.)z(l—ﬁm;)(l~[5mw))E
- 0

B

(1 - Booy {1 —Bar (1 —Ber)

=)l e )v(l—@3) +v3(1—fo (1 -Pas)) E
0

B

(1 - By M1 —Bas )1 —PBes)
(1= )1 -@3)(v(] —@ ) +v (1 - e, )1 —Be)) E
0

B

(1 =By )(1—Ban (1 —Be)’

o0 e )v( —an) v - Pe )= Paz)) Eo

B

(1) (1B, )1 —Par)

((l—an P(1 mx)j—\'z(l*[im.)(l——]&mg)z(l—fﬁm;))E)
(

B

(1= By ) 11— P )1 —Ber )
(1)1 —@)(v(1—@) +v2 (1 ~@> )1 —Bw,)) E
0

B

(1= )1 —Boos ) | ~Parz)”
Ey

B

(1—Po) (1 -pe )1 —po)’

U=l —an)(v(l =) (1 —po )| —po: ) E
0

B

(1—@:3)" (1~ By )1 —Pey)

B

N

B=1{1-o)( -o)(]—w)

— V(1 = Bo )1 — Bea)(1 ~ Bor)

+ (1= pa)*(1 — Pa)(1 — Pa)(1 — o)
+ (1= Bo)(] = Pwx) (1 — B )(1 — @2))
= 2v (1 = B (1 — B2 (1 — Bws)))
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