Chapter 1.

Equilibrium Stress
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Equations of Fquilibrium. Equilibrium of a body requires both a
balance of forces, to prevent the body from translating or having accel-
erated motion along a straight or curved path, and a balance of
moments, to prevent the body from rotating. These conditions can be
expressed mathematically by the twa vector equations

EF=“ {1_1}
IMy=0

Here, = F represents the sum of all the forces acting on the body, and
¥ My is the sum of the moments of all the forses about any point O
either an or off the body. If an x, ¥, z coordinate system is established
with the origin at poiat O, the force and moment vectors can be resolved
into components along the coordinate axes and the above two equations
can be written in scalar form as six equations, namely,

SF=0 SFf=0 TF=0 (1-2)
M. =0 IMy=0 IM=0| .

OHten in engineering practice the loading on a bedy can be repre-
sented as a system of coplanar farces. If this is the case, and the farces
tie in the x-y plane, then the conditions for equilibrium of the body can
be specified by only three scalar equilibrium equations; that is,

‘TF.=0
"IE=0 (1-3)
EMe=0
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EXAMPLE 1-1

Determine the resultant internal loadings acting on the cross section
at ¢ of the beam shown in Fig., 1—4a.

T Wm

- Fo. 14

SOLUTION
Support Heactivas.  This problem can be soived in the most dirsct

manmer by ¢onsidering segment CB of the beam, since then the sup-
port reactions at A du not have o be computed.

Free-Dody Diagram. Passingan imaginary section perpendicular to
the longitudinal axis of the bzam yields the free-body diagram of seg-
ment CB showsn in Fig. 1-4h. It is important to keep the distributed
loading exactly where it is oo the segment until afrer the section is
made. Only then should this loading be replaced by = single resultant
force. Naotice that the intensity of the disteibuted loading at € is
determined by proportion, i.e., from Fig. 1-4a, wi6 m = 270 N/m/9 m,
w = 180 N/m. The magnitude of the distributive Joad is equal to the

- areq under the loading curve (triangle) and acts through the centroid

of this area. Thus, F=1(180 N/m)(6 m)=3540 N, which acts
1/3(6 m) = 2 m from C as shown in Fig. 1-4b.

Eguarions of Equilibriumn. Applying the equations af equiibrium
we have

LIF=0 -Ne=0
Ne=1 Ans
+tEF=0, Ve— S40N =10
VC=5‘“]N Ans,
FEMe=0; —Me— 540 N2 m)=0
Mc=_1ﬂ80N'lIl Ans

The negative sign indicates that M acts in the opposite direction on
the free-body diagram. Try solving this problem using segment AC,
by first obtaining the support reactions at A, which are given in Fig
1-4<.



EXAMPLE 1-5

Determine the resnltant internal loadings acting on the cross section
at B of the pipe shown in Fig. 1-8a. The pipe has a mass of 2 kg/m
and is subjectad ta both a vertical force of 50 N and a couple momeat
of 70 N - m atits end A4, It is fixed to the wall a1 C.

SOLUTION

The problem can be solved by considering segment A 8, which does
not involve the supporl reactions at C 0 Nem

Free-Body Diagram. The x, y, 1 axes are established at B and the
free-body diagram of segment AE is shown in Fig. 1-8b. The resul-
tant force and moment components at the section are assumed to act
in the positive coordinate directions and to pass through the centroid
of the cross-sectional arsa at 8. The weight of each sepment of pipe
is calculated as follows:

Wap = (2 kg/m){0.5 mH9.81 Nikg) = 9.81 N
Wap = (2 kg/m)(1.25 m)(5.81 Nrkg) = 24.525 N

These forces act through the center of gravity of each segment.

Eguarions of Equilibrivm. Applying the six scalar equations of
equilibrium, we have*

TF, =1 (Fa)c=0 Ans
IF, =0 (Fg)y =0 Ans.
LF,=0; (Fp), =98I N-24525N-50N=18

{(Fg)y =843 N Ans.

S(Mg); = 0 {Mg)e + 70 N-m — 50 N(L5 m) — 24.525 N(0.5 )
— 981 N(025m) =0

, (Mgly=—"MI3IN-m Ans.

B{Mz), =0; (Mp), + 24525 N(0.625 m) + S0 N(1.2Z5 m) =0
(Mg}, = -7T7T8N-m Ans,
Z{Mgp). =0 (My), =0 A,

What do the negative signs for (Mg}, and (My), indicate? Note that
the normal force Ng = (Fg), = 0, whereas the shear force is Vg =
VDY + (8432 =843 N. Also, the torsional moment is Tp=
(Ma)y = 778 M - m and the bending moment is Mg = V(303F + {n)%
303N-m.

*The magritide of sach moment about an axis is squal ta the magmimde of cach force
limes the perpendicilar distance from the axis to the line of action of the force. The
direction of sach moment is determansd vsing the right-hand e, with positive mo-
ments {thumb) directed along the positive coordinate axes.
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Fig. 1-t4

Average Normal Stress Distritution, Assuming the bar is subjeeted
to a constant mniform deformation s noted, then this deformation is
caused by a constant normal stress «, which is unifornly distributed over
the bar’s cross-sectional area, Fig. 1-144. Since each area AA on the Cross
section 1s subjected to a force AF = aAA, the sum of thase furces acting
wver the entire cross-sectional area must then be equivaient to the
internal force resultant P a¢ the section. If we Jet AA - dA and there-
fore AF - dF, then, recognizing ¢ is conrxtant, we have

+1 Fr, = T Fy; f;ﬂ?:f o dd
. ] A
F=g4a

ar

(1-6)

Here
¥ = average nommal stress at any point on the cross-sectional area

P = internal resultant normal force, which is appiied through the cen-
troid of the cross-sectional area. P is determined using the method
of sections and the equations of equilibrizm.

A = cross-sectional arcs of the bar

——
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8.05 MPa

{dy

B.05 MPa
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EXAMPLE 1-7

The 80-kg lamp is supported by two rods AD and 8C as shown in Fig.
1-17a. If AR has a diameter of 1 wm and B has s diameter of
B mm, determine which rod is subjected to the greater average nor-
mal siTess.

B0MO81)=Ta 8N
()
Fig. 1-17

SOLUTION
Internal Loading. 'We must first determine the axial force in sach

rod. A free-body diagram of the lamp is shown in Fig. I-176. Applying

the equations of force equilibrivm yields

XsF =0 Fpc($) — Faa cos 60° =0

+HEE =10 Far{#) + Fgq sin 60° — 7848 N= 0
Fpe=3052N, Fpa=6324N

By Mewton’ third law of action, equal but opposite reaction, these
forees subject the rods to tension throughout their length.

Average Normal Stress.  Applying Eq. 1-6, we have
oac = FBC 3952 N

Agc w0004 m)?
v = Foa __6324N

847 Aga  w0.005 mp?

The average normal stress distribution acting over a cross sec-
tion of rod A& is shown in Fig. 1-17¢, and at a point on this cross
section, an element of material is stressed as shown in Fig. 1-174.

= T7.86 MPa As.

= B.05 MPa

WL




1-19. Dectermine cthe resultant internal Ioadings oo the
cross sections through poinrs & and £ on the frame.
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_ ) 1-49. The open square butl joint is used o tramsmy a 10ree

g of 50 kip from one plare ta the other. Determine the average

\ normal and average shear stress components that this
; \oading creates on the {ace of the weld, section AB.
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1-61. The bur is subjected to a umitorm distobuted axial
loading of 10 kN and a concentrated foree of 1.5 kN at it

midpimt as shown. Determine the maximum average normal
stress in the bar and irs Jocgtion ..
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( N 1.7 DesioN of SiMP1E CONNECTIONS
,

By making simplifying assumptions regarding the behavior of the
marterial, the equations o = PrA and Ty = ¥iA can often he used 1o
analyze or design « simple connection or a mechanjcal element. In
particular. if a member is subjected o a normal force ar a scetion, irs

required arca at the section is determined from

a==F ' (1-11)

Dallorw

On the other hand, if the section is subjected 1o a sheur jorce, theu the
required area at the section is

P

T.'Jllu;:w

(1-12)

As discussed in Sec. 1.6, the allowable stress used in each ol these
equations is determined cither by applying a factor of safely to a
specified normal or shear siress or by finding thesc siresses directly from

an appropriate design code.
We will now discuss four common types of problems for which the

above cquations can be used for design.
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L-%8. The lapbelt assenbly is to be subjected ro a force of
800 M. Dietermine {4) the required thickness ¢ of the belt if
the allowable tensile stress  for  the ateriaf s
(o o = 10 ¥ Pa, (b the reguired lap length &, if the glue
can suata an allowable shear stress of (10,0, = 1173 MPa,
and () the required diamerer 4, of the pin if the aliowable
shear steess for the pin s {roe), = 30 MPa.
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