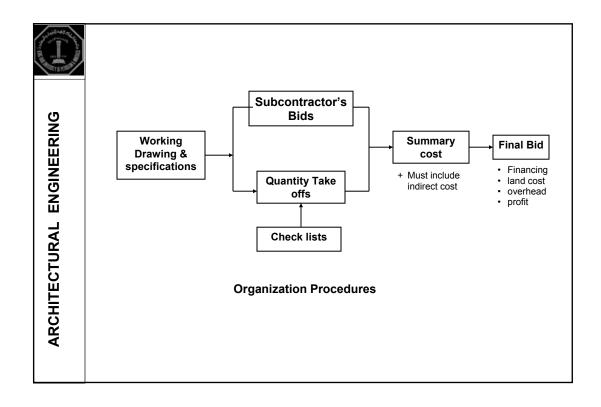
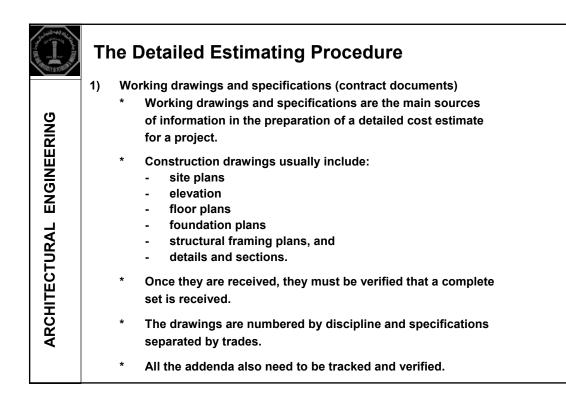
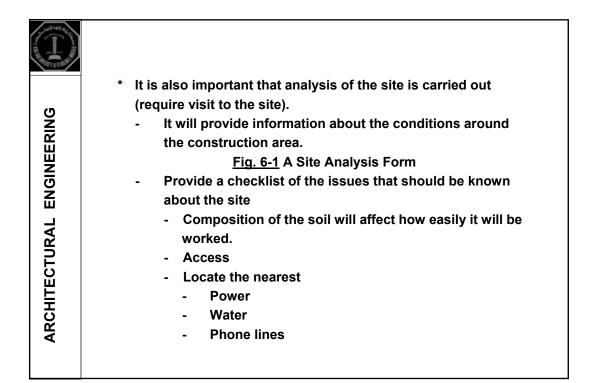

	Outline
ARCHITECTURAL ENGINEERING	Introduction Successful Construction Estimating The Detailed Estimating Procedure The stretch- out- Length concept (SOL) Site Work and Excavation


	Detailed Estimating-Introduction
DN SN	Why unit price estimates are prepared, and how they are used?
INEERI	 Detailed estimates (unit price estimates) are done at end of the design phase.
ENG	* When it is prepared by project team (owners), it is called <u>a fair cost estimate</u> .
TURAI	* When it is prepared by contractors and accepted by the owners, it is called <u>bid estimates.</u>
ARCHITECTURAL ENGINEERING	* Detailed estimates take weeks to prepare and involve many people from different disciplines.


	Side-part - Successful Construction Estimating	
architectural engineering	 Definition of a Construction Estimate * A construction estimate is a forecast of a project's "actual" cost. * To arrive to "actual cost" is to visualize building the project through the estimating process. Building the project in your mind's eye, or Visualizing the process is fundamental to achieving realistic estimate totals. 	
ARCHIT	* The estimating process consists of breaking a project down into logical components (e.g., excavate for spread footing, form up for spread footing, place concrete for spread footings) which are then:	

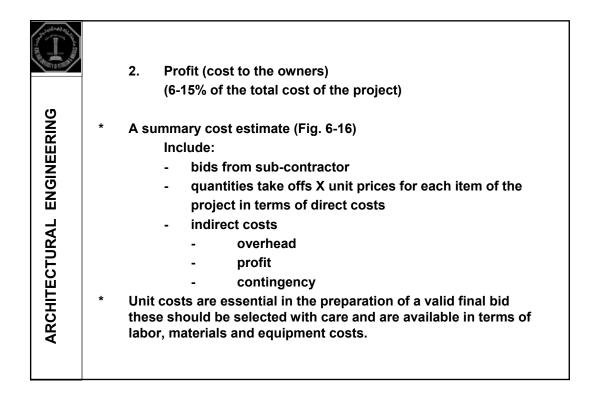
	Side-part - Successful Construction Estimating
	Scoped
	Quantified
N Z	priced
L R L	* Scoped:
Z	 Unique dimensions, specified quality and construction
ENGINEERING	methodology and potential problems and solutions.
L L	 It is derived from design documents (plans and
RA	specifications) and the estimator's experience and
ARCHITECTURAL	construction background.
LIH:	- Project site visits are encouraged for addressing such
RC	scoping issues at site access exit egress, storage
	capabilities, utilities locations, the extent of ongoing
	operations.

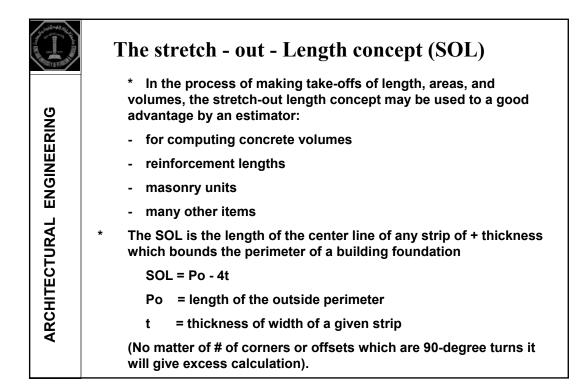
	Side-part - Successful Construction Estimating
ARCHITECTURAL ENGINEERING	 Quantifying Packaging of project components' scope into unity that can be priced such as "cubic yards" of concrete pounds of reinforcing steel square foot of strip footing framework days of rental of a concrete bumper task. Pricing Applying market place labor, material, and equipment costing to the quantities (care should be taken to project location, quality and job specifies. Overhead and profit issues Contractors home office overhead profit, sale taxes,
ARCH	labor burden, bond contingency [represent % of total estimates].

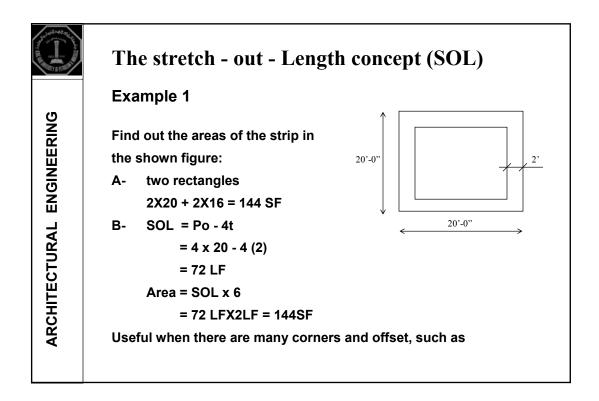


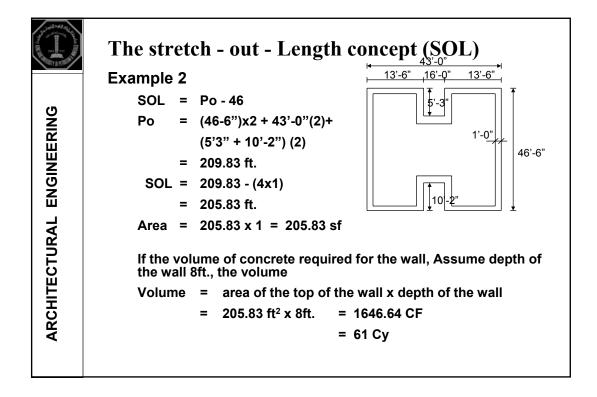
(7)	2)	Sub-Contractors' Bids
ARCHITECTURAL ENGINEERING	,	 * Before preparing an estimate, the general contractor must decide which construction activities are to be done by sub-contractors and which are to be done by its own work forces (In-house work). * A contractor should contact there to sub-contractors (for completing bid) for each phase of the work which the contractor's workforce will not do. * Sub-contractors usually furnish labors, materials, and equipment required to complete their phases of the work.
ARCH		

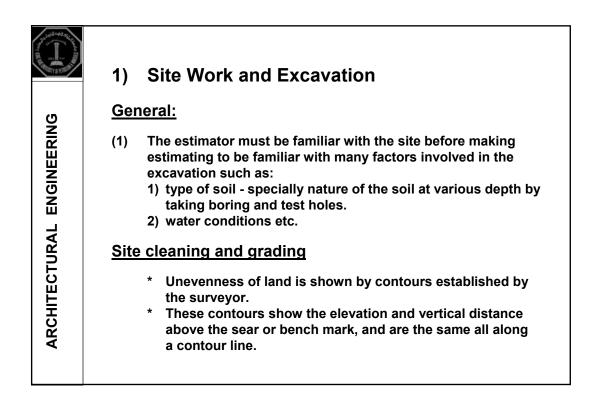
And Carl		
		3) Quantity Take-offs:
	ARCHITECTURAL ENGINEERING	 * Quantity take off is the foundation of the estimate * The goal of the quality take-off is to calculate every item of the project. * Thus, it is important that working drawings and specifications be studied, and understood before start of take off quantities. There will provide a good understanding of the magnitude and the scale of the project. Visualize how the project will be constructed * The estimator looks at: the material used amount of repetition structural system electrical system
1		

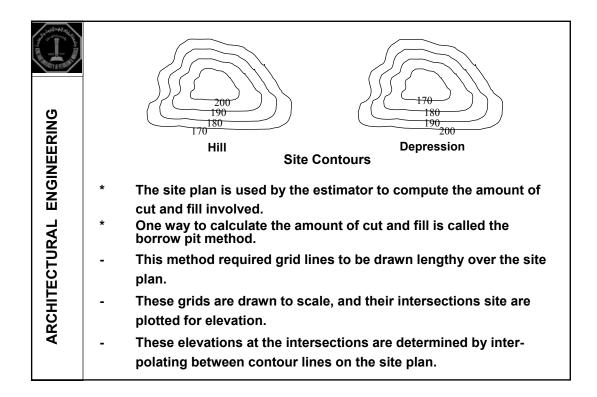

 * Although there are a number of ways for a take-off to proceed, the construction sequence is usually the most logical. (quantity take off and scheduling process are inter-related) For example: After the site preparation and excavation activities have been estimated, concrete could be taken next. In the concrete section, the sequence could be: pier footing foundation pier will footing foundation wells ground slab steps columns, beams, girders supported slab roof fill floor finishing mubbing and outbol 	
ONING 1) After the site preparation and excavation activities have been estimated, concrete could be taken next. In the concrete section, the sequence could be: - pier footing - pier footing - foundation pier - will footing - foundation wells - ground slab - steps - columns, beams, girders - roof fill - floor finishing	the construction sequence is usually the most logical. (quantity take
	 After the site preparation and excavation activities have been estimated, concrete could be taken next. In the concrete section, the sequence could be: pier footing foundation pier will footing foundation wells ground slab steps columns, beams, girders supported slab roof fill

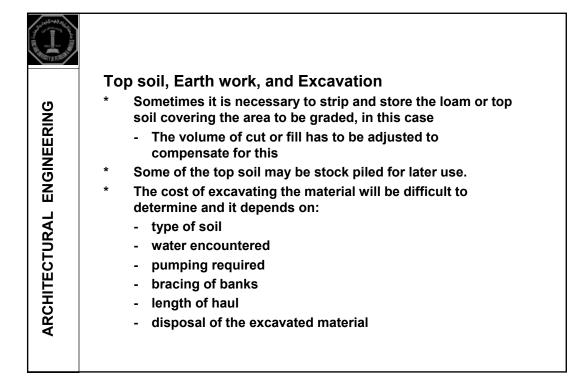

		The same procedure will be followed in the other selections as well.
UNG.		
EER	2.	Using a checklist (as will be explained later) to cover the itemized list of the activities involved in building that particular project.
ENGINEERING		
	3.	Techniques that are utilized when accomplishing a quantity take off.
ARCHITECTURAL		During quantity take off:
CT		- mark nicely and in order.
Ë		- be organized
4 2 2		- use common sense
Ρ.		- be consistent


	* Use preprinted forms - Fig. 6-8
	* List dimensions (width, length, height) in a consistent order.
Ű	 Verify the scale of drawings before using them as basis for measurement:
ERI	- be alert for changes in scale - NTS (not to scale)
N N	- sometimes drawings have been photographically reduced.
ENGINEERING	* Mark drawings neatly and consistently as quantities are counted
	and put all the figures in the correct columns of the preprinted forms.
I I	* Take advantage of:
Ľ Ľ	- repeated project elements such as multiple floors & elevators.
🗄	- design symmetry (Fig. 6-9)
ARCHITECTURAL	* Adjust for waste for quantities (Fig. 6-10)
4	 Include required items which are not included in the working drawings (from site visit) (Fig. 6-11) (shrink & swell)


	4.	Checklists
ARCHITECTURAL ENGINEERING		 * The purpose of a checklist is to remind the estimator to include every significant item performed in the construction process. * Also, it will help the estimator to be organized which is a keg to prepare reliable estimates and avoiding mistakes. * It involves breaking a project down into logical components which are then each: scoped quantified priced Example a checklist for a single - family residence (Fig. 1.4) which may differ from other project. Through means the master format specifications which is divided into the Building Cost Data Book using 16 divisions as checklist Fig. 5-11 or Master format Figure (Page 5)
		(Fig. 0.2 as perish mark reference)

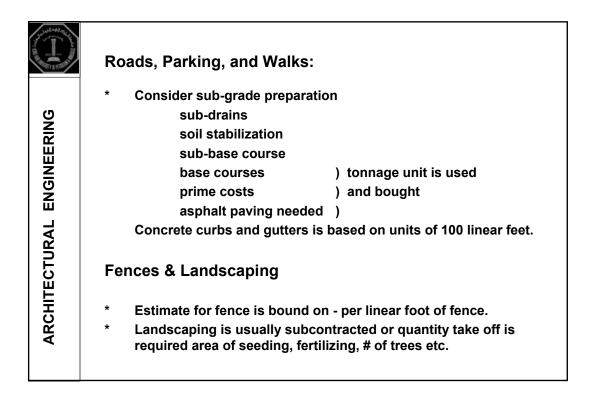

	5)	Summary Sheet
()	*	When the quantities have been determined, then prices, or unit costs must be applied in order to determine the total costs.
≚	*	Unit costs are made up of:
L R		Direct (bare or unburden costs)
		1. Materials or quantity take off - cubic yards, etc.
UB		2. Labor - from historical records (productivity X wages)
ENGINEERING		3. Equipment
		- tool sheds
RA		- storage buildings
		- wood working
ARCHITECTURAL		- material handling machines
IE I		Indirect costs
L C		1. Overhead (10-25% of direct costs)-Fig.6-17
AR		a) Job overhead - 4-10% of direct loss
		b) General overhead (home office 2-8% direct cost)





	Example:-	Fig. 2-2 Site Plan with Contours
ARCHITECTURAL ENGINEERING		

	 * Bulk or mass excavation for basements and other large areas below grade is determined after site - clearing operation is estimated.
	Volume of bulk excavation = depth
ENGINEERING	The excavation line around the building will have to beset back to allow for form work and the sloping of the cut.
	- The sloping of the cut depends on:
N IS	type of the soil
N.	depth of the cut
	presence of the water
IAI	 For undisturbed soil and no water present
Ц.	slope used for banks Horizontal/Vertical
CT	= 1:1 for sand and gravel
	1:2 for ordinary clay
ARCHITECTURAL	1:3-4 for stiff clay
	 Sometimes it is not possible to slope the banks and in this case - use sheet and brace the banks to prevent cave-ins


	Swellage and Shi	rinkage		
ENGINEERING	 In computing the cubic volume of an excavation or backfill provision should be made of swellage and shrinkage. 			
	- Swell - increase in volume			
	- Shrink - decrease in volume by compaction (Fig. 6-11).			
	<u>Material</u>	Swellage factor	Compact	<u>Shrinkage</u>
ARCHITECTURAL	Sand & gravel	1.10 - 1.18	(1.12)	0.95
	Loam	1.15 - 1.25	(1.25)	0.90
	Dense clay	1.20 - 1.35	(1.27)	0.90
	Solid rock	1.40 - 1.60		
	Actual amount of earthwork = volume of undisturbed soil X swellage factor			

	Example:
D N	If an undisturbed volume of loam soil measures 80ft. X 100 ft. and has a depth of 8ft., then its volume, cy, would be
ARCHITECTURAL ENGINEERING	$80 \times 100 \times 8$ Volume = 2370 cy 27 The actual volume of loam soil would be 1.20 times that amount Volume = 1.20 x 2370 = 2844 cy
	* The 474-CY increase in volume is due to the swellage of the loam soil during the process of excavation.

Ű	Utility and Drainage Trenches:
ARCHITECTURAL ENGINEERING	 * Other than bulk or mass excavation, there are other excavation items need hard or special equipment for excavation, such items: utility trenches footings drainage trenches pits other special items * The cost for excavation for such items are more expensive than bulk or mass excavation. * In determining the volume of the soil to be hauled away, swellage factors should be used.

	Drainage Trenches:	
ENGINEERING	 * Various types of drainage systems are required to remove sub- surface water. * Since drainage trenches, such as sewer trenches, must have a slope, the computation of the depth of the trenches is based on an average depth. Minimum slope 6in. Per 100 linear feet (LF) 	
	Calculation of Excavation Volume: 3'-0"	
ARCHITECTURAL	If a slope 1/4" per foot : 25" for 100 ft.	
12	2.08 ft. for 100 ft.	
U U U	Average depth = $2.08/2$ ft. = 1.04 ft.	
⊑	Undisturbed Volume= (3'-0 + 1.04)ft. x width x length / 27	
L C	= (2.08/2 + 3.0) x 2.0 x 100/27 = 29.9 cy	
AR	Volume = Swellage factor x undisturbed volume	
	= 29.9 x 1.30 = 38.9 cy	
	$-23.3 \times 1.30 - 30.3 \text{ Cy}$	

	Back Fill
ARCHITECTURAL ENGINEERING	6" V L drainage tile

