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Failure-Rate Prediction for De Havilland Dash-8 Tires
Employing Neural-Network Technique

Ahmed Z. Al-Garni,∗ Ahmad Jamal,† Abid M. Ahmad,‡ Abdullah M. Al-Garni,§ and Mueyyet Tozan¶

King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

An artificial neural-network model for predicting the failure rate of De Havilland Dash-8 airplane tires utilizing
the two-layered feedforward back-propagation algorithm as a learning rule is developed. The inputs to the neural
network are independent variables, and the output is the failure rate of the tires. Six years of data are used for
model building and validation. Model validation, which reflects the suitability of the model for future prediction, is
performed by comparing the predictions of the model with that of the Weibull regression model. The results show
that the failure rate predicted by the artificial neural network more closely agrees with the actual data than the
failure rate predicted by the Weibull model.

Nomenclature
C = intercept
d = integer, 1 ≤ d ≤ m
F(t) = failure rate at time t
f (net) = log-sigmoid function
i = integer, 0 ≤ i ≤ N ′

j = integer, 1 ≤ j ≤ k
k = integer, m ≤ k ≤ N + n
k ′ = number, 0.65 < k ′ < 1
l = number of landings
m = number of inputs to the neural network
m ′ = slope of a straight line
N = number of neurons in neural network
N ′ = number of observations
n = number of outputs to the neural network
Os = outputs from the neural network, s varies from 1 to n
O(t) = Os(t)
Phg = hth tire of gth airplane
R(t) = reliability, 1 − F(t)
T (t) = time beyond a given time, T > t
t = flight operational time
ti = flight operational time, at the observation
tmin = minimum time t
to = minimum guaranteed life of the tire
tr = cumulative contact time on the runway
W = weight matrix for the hth tire of the gth airplane; h

varies from 1 to 4
Wkj = element of the weight matrix
w = independent variable in regression
Xd = input to the neural network, d varies from 1 to m
x j = normalized Xd

xk = activation level of the neurons
Z = dependent variable in regression
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β, η = parameters of Weibull model
λ(t) = instantaneous failure rate of the tires

Introduction

T IRES of airplanes, like tires of automobiles, are subjected to
a number of wear-out processes, for example, uniform wear,

accelerated wear at certain spots, microchipping, localized tire de-
formation, and so forth. In the case of airplanes, when the tires are
in contact with the runway on landing, the conditions of wear are
far more severe than the corresponding conditions in automobiles
on highways. In the case of airplanes, the loads are not as uniform,
there is a variety of shock loads, and a severe load spectrum is gen-
erated that can cause accelerated wear. Because tires are important
aircraft components and the safety of an aircraft greatly depends on
the reliability of its tires, their periodic monitoring and preventive
maintenance are essential measures to increase aircraft reliability
and are crucial for safe takeoff and landing. Tire life is defined by
the wear limits set by controlling aviation agencies. When the tire
damage due to wear-out processes reaches this critical limit, the tire
is considered to have failed. The time to reach this critical manifes-
tation of wear can be measured either by associated flight time or in
terms of number of landings. It can also be written as t ∝ tr and t ∝ l
where t is the flight operational time, tr is the time that the airplane
tires are in contact with runway, and l is the number of landings. The
tire life is not a fixed value but rather a random quantity, which is
determined by t , bounded by to < t < ∞, where to is the minimum
expected life.

Accurately modeling the failure rate of airplane tires is of prime
importance. This model should accurately predict the time of fail-
ure to avoid crashes during landing or takeoff. Various conven-
tional regression models can be developed to model this failure
rate. However, much interest has recently been focused on the ap-
plication of artificial neural-network (ANN) modeling,1−7 and it
has been shown that the ANN performs better than the regression
models.

The ability of ANN to model multivariate problems without mak-
ing complex dependency assumptions among the input variables
is an advantage over the statistical models. Moreover, ANN ex-
tracts the implicit nonlinear relationships among the input variables
through a learning process from the training data set. These features
make neural networks good alternatives to conventional regression
techniques. The objective of the present paper is to build an ANN
model that predicts the failure rate of De Havilland Dash-8 airplane
tires and to compare it with the Weibull regression model. The rest
of the paper is organized as follows: in the second section, an intro-
duction to neural networks and feedforward back-propagation (BP)
networks is presented; in the third section, the failure time data
for the tires is presented; in the fourth section, a regression model
(the Weibull model) and the neural-network model are developed;
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a comparison of the results obtained from the Weibull and neural-
network models with the real data is presented in the fifth section;
and the sixth section concludes the paper.

Artificial Neural Network (ANN)
Introduction to ANN

An ANN is an information-processing system that has certain
performance characteristics in common with biological neural net-
works. ANNs are computational systems that mimic the biological
neural networks of the mammalian brain. The human brain contains
about 100 billion neurons (neuron cells), interconnected in a com-
plex manner via synapses (junctions between axons and dendrites),
thus constituting a network. An ANN is a collection of neurons that
are arranged in specific formations. Neurons are grouped into lay-
ers. A multilayer network usually consists of an input layer, one
or more hidden layers, and an output layer. The number of neu-
rons in the input layer corresponds to the number of parameters
that are presented to the network as inputs. The same is true for
the output layer. Neural-network analysis is not limited to a single
output, and neural nets can be trained to build neuron models with
multiple outputs. The neurons in the hidden layer or layers are re-
sponsible primarily for feature extraction. They provide increased
dimensionality and accommodate such tasks as classification and
prediction.

Recent Developments
The basic idea of the neural network was initiated by MuCullock

and Pittis.8 They studied the ability of a model neuron to inter-
connect several basic components. Later, Rosenblatt9 coined the
name “perceptron” and devised an architecture that received much
attention. However, a rigorous analysis of the perceptron, made by
Minsky and Papert,10 demonstrated that it had certain limitations.
This almost brought research in this area to a halt, but later the work
of Hopfield11 revived the interest in neural networks. Since then, a
variety of ANN algorithms have been proposed and used in recent
years. Presently, research on ANNs is being performed in a great
number of disciplines, ranging from neurobiology psychology to
engineering sciences.

ANN Working Methodology
A typical ANN operation starts with the training stage. This stage

is conducted using various training data sets that include the respec-
tive inputs and the corresponding desired outputs. The initial net-
work connection weights are set to equal small random numbers.
After the network is properly trained, the recall stage starts. In this
stage, a set of test data is applied to the network. Afterward, the
performance of the network is analyzed. This performance depends
on various factors such as the statistical soundness of the training
data set, the structure and size of the network, the initial network
weights, the learning strategy, and input variables.

Back-Propagation Algorithm
Most of the currently used ANNs for process estimation or pre-

diction problems are layered feedforward neural networks (FNNs),
also called multilayer perceptrons. The BP algorithm is the most
widely used learning procedure for neural networks.12,13 It is in
fact a gradient descent-error-correcting algorithm. Before beginning
training, some small random numbers are usually used to initialize
each weight on each connection. BP requires preexisting training
patterns, and involves a forward-propagation step followed by a
BP step. The forward-propagation step begins by sending the input
signals through the nodes of each layer. A nonlinear activation func-
tion, called the sigmoidal function, is usually used at each node for
the transformation of the incoming signals to an output signal. This
process repeats until the signals reach the output layer and an output
value is calculated. The BP step calculates the error by comparing
the calculated and target outputs. New sets of weights are iteratively
calculated by modifying the existing weights based on these error
values until a minimum overall error, or global error, is obtained.
The mean-square error (MSE) is usually used as a measure of the

global error.14 The following logic is assumed in BP13:

x j = normalized Xd 1 < d ≤ M (1)

netk =
k − 1∑
j = 1

Wkj x j m ≤ k ≤ N + n (2)

xk = f (netk) m < k ≤ N + n (3)

Os = xN + s 1 ≤ s ≤ n (4)

f (net) = 1

1 + e−netk
(5)

where m is the number of inputs to the network, n is the number of
outputs of the neural network, and Xd represents the actual inputs to
the network (which have to be normalized and then initially stored
in xi ). The nonlinear activation function f (net) in Eq. (5) is a log-
sigmoid function, and it depends on the desired output data range. N
is a constant, which represents the number of intermediate neurons
in the neural network. It can be any integer as long as it is not less
than m. The value of N + m determines how many neurons are there
in the network (if we include the inputs as neurons). W is the weight
matrix in each layer whose size depends on the number of neurons
in the corresponding adjacent layers of neural network. The term xk

is called the “activation level” of the neuron, and Os is the output
from the neural network. The input and output to the neuron is given
in Fig. 1. The significance of these equations is illustrated in Fig. 2,
which shows the connection in the network.

There are N + n circles, representing all the neurons in the net-
work, including the input neurons. The first m circles are copies of
the inputs X1, X2, . . . , Xm ; they are included as a part of the vector
x only as a way of simplifying the notation. Every other neuron is
the network such as neuron number k, which calculates netk and xk ,
takes input from every cell that precedes it in the network. Even the
last output cell, which generates Os , takes input from other output
cells, such as the one whose output is Os − 1.

Fig. 1 Artificial neuron with activation function.

Fig. 2 Network design for BP.
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Fig. 3 Airplane and its tires.

Tire-Failure Time Data
The data were collected from a local aviation facility in

Saudi Arabia. The data represents the time-to-failure of tires for
the De Havilland Dash-8 series over a period of 6 years for a fleet
of three airplanes. These three airplanes have the registration num-
bers N724A, N725A, and N759A. Data was collected for all six
tires of each airplane. In this type of aircraft (De Havilland Dash-8
series), there are six tires, two on the left, two on the right, and
two in the front near the nose of the airplane. For convenience,
we have named the three airplanes in serial order so that airplane
N724A is A, N725A is B, and N759A is C. Tires are also num-
bered as 1 and 2 to the left, 3 and 4 to the right, and 5 and 6 in
the front, as shown in Fig. 3. A tire of any of the three airplanes
can be represented by Phg; for example, P3A refers to the third tire
on the right of the airplane A, that is, N724A. Failure is defined
whenever, at the inspection time, it is observed that the tire needs
to be replaced according to the aviation standards being followed.
The data, which is obtained from the log book of each airplane, are
recorded in two forms: as flying time in hours between the replace-
ments and as number of landings between the replacements. How-
ever, in the present study, flying time is used as an indicator of life of
the tires.

Tire-Failure Prediction Models
Regression Model
Reliability of Tires in Terms of Flight Time

The reliability R(t) of a tire characterizes the probability of its
survival beyond a given time t ; that is, R(t) = P(T > t), and in
general terms, it can be defined as15,16

R(t) = exp

[
−

∫ t

0

λ(t)dt

]
(6)

where λ(t) is the instantaneous failure rate of the tires and t is pro-
portional to tr , which in turn is proportional to l. Tires are subjected
to an increasing failure rate as the operational time, that is, the num-
ber of landings, increases. Thus, the most suitable characterization
on instantaneous tire failure rate will be described by a power-law
function of time, so that

λ(t) = [β/(η − t0)]
[
(t − t0)/(η − t0)

β − 1
]

(7)

where η is a scale parameter that expresses the characteristic life
and β is a shape parameter of the model that determines the severity
of the wear-out process. Using this power-law failure-rate model,

Eqs. (6) and (7) represent a well-known three-parameter Weibull
reliability model, which can be written as follows:

R(t) = exp
{−[(t − t0)/(η − t0)]

β
}
, t > to (8)

where t is the random variable characterizing the life of the tire,
to < t < ∞.

Fitting the Weibull Model Failure Data
To fit the data, the complementary function to the reliability func-

tion R(t) is often used, which is also known as the cumulative func-
tion F(t) = 1 − R(t) and defines P(T > t). Thus, using Eq. (8), one
can write

F(t) = 1 − exp
{−[(t − t0)/(η − t0)]

β
}
, t > to (9)

among various approaches used in fitting the Weibull model to the
failure data. A procedure used by Ref. 16 is the most lucid, and it
is easy to implement. This method linearizes the equation F(t) as
follows:

ln[1 − F(t)] = −[(t − t0)/(η − t0)]
β

ln((ln{1/[1 − F(t)]})) = βln(t − t0) − βln(η − t0) (10)

Now let

Z = ln((ln{1/[1 − F(t)]}))
w = ln(t − t0), m ′ = β, C = −β ln(η − t0)

Equation (10) may now be put in the form

Z = m ′w + C (11)

After arranging the failure data in ascending order, the probability
distribution function can be substituted by its estimate, using the
median rank formula15:

F(ti ) = i/(N ′ + 1), 0 ≤ i ≤ N ′ (12)

Linearized Eq. (11) can be fitted to the experimental data F(ti ) vs
(ti − t0) for i = 1, 1, 2, . . . , N ′. By performing the linear-regression
analysis using linearly transformed Eq. (11), the parameters β and
η can be determined. This approach implies that t0 is known. The
value of t0 is less than t0 = k ′tmin, where 0.65 < k ′ < 1. A starting
point can be taken as t0 = 0.6 tmin. If a straight-line fit is poor, then
this value can be adjusted between 0.65 tmin − 0.99 tmin until a good
fit is obtained.

A spreadsheet (MS Excel) was used to perform this analysis on the
tires of all the three airplanes. Table 1 gives the complete analysis for
P5A. The regression output for this analysis is presented in Table 2,
which gives the values of the parameters of the Weibull model.

Neural-Network Model
In this section, an ANN is developed to model the failure rate of

the tires. The input to the neural network is time in hours, and the
output of the neural network is the failure rate corresponding to that
time. Because the present study represents a dynamic system, which
is one whose state varies with time, an autoregressive model that
uses inputs corresponding to previous points in time can be used.14

For such purpose, three cases are studied:
1) One input m = 1, one output n = 1, and six intermediate neu-

rons N = 6.
2) Two inputs m = 2, one output n = 1, and six intermediate neu-

rons N = 6.
3) Three inputs m = 3, one output n = 1, and six intermediate

neurons N = 6.
For the second and third cases, one and two previous time inputs

are taken, respectively, for each time input. The activation function
(log-sigmoid function) takes the input and squashes the output into
the range 0 to 1 as shown in Fig. 4. This function is commonly used
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Table 1 Regression analysis of the failure data (h) of P5A for Dash-8

i ti , h Xd = (ti − t0) ln(t − t0) F(ti ) = i/(N ′ + 1) ln ((ln{1/[1 − F(ti )]})) Regression

1 57 22.8 3.1268 0.0357 −3.3141 −4.3211
2 80 45.8 3.8243 0.0714 −2.6022 −2.3957
3 91 56.8 4.0395 0.1071 −2.1775 −1.8015
4 98 63.8 4.1558 0.1429 −1.8698 −1.4807
5 102 67.8 4.2166 0.1786 −1.6260 −1.3128
6 108 73.8 4.3014 0.2143 −1.4223 −1.0787
7 116 81.8 4.4043 0.2500 −1.2459 −0.7946
8 117 82.8 4.4164 0.2857 −1.0892 −0.7611
9 122 87.8 4.4751 0.3214 −0.9474 −0.5992
10 122 87.8 4.4751 0.3571 −0.8168 −0.5992
11 123 88.8 4.4864 0.3929 −0.6952 −0.5680
12 125 90.8 4.5087 0.4286 −0.5805 −0.5065
13 128 93.8 4.5412 0.4643 −0.4714 −0.4168
14 131 96.8 4.5726 0.5000 −0.3665 −0.3299
15 134 99.8 4.6032 0.5357 −0.2649 −0.2456
16 134 99.8 4.6032 0.5714 −0.1657 −0.2456
17 136 101.8 4.6230 0.6071 −0.0679 −0.1908
18 137 102.8 4.6328 0.6429 0.0292 −0.1639
19 137 102.8 4.6328 0.6786 0.1266 −0.1639
20 148 113.8 4.7344 0.7143 0.2254 0.1168
21 155 120.8 4.7941 0.7500 0.3266 0.2815
22 155 120.8 4.7941 0.7857 0.4321 0.2815
23 167 132.8 4.8888 0.8214 0.5439 0.5430
24 168 133.8 4.8963 0.8571 0.6657 0.5637
25 168 133.8 4.8963 0.8929 0.8036 0.5637
26 169 134.8 4.9038 0.9286 0.9704 0.5842
27 172 137.8 4.9258 0.9643 1.2036 0.6450

Table 2 Regression output for failure
data, h, for P3A

Parameter Value

Constant C −12.9523
Std. error 0.3335
R squared 0.9150
No. of observations N ′ 27
Degree of freedom 25
Std. error of coefficient 0.1683
β 2.7604
η 143.2873
t0 34.2

Fig. 4 Log-sigmoid function.

in multilayer networks that are trained using the BP algorithm, and
also this function is differentiable. The predicted failure rate can
be found by using the forward-pass calculation, Eqs. (1)–(4). The
training of the neural network is carried out using the BP technique.14

The objective is to minimize the sum squared error given by

error =
∑

[F(t) − O(t)]2

where F(t) is the actual failure rate, and O(t) = Os(t) is the final
output that is calculated from the neural-network model. The number
of passes is usually set to a high number. The initial error is high
because the initial weights were assigned randomly. As the network
is trained, the error decreases and converges to a minimum value.

Fig. 5 Comparison of failure rate F(t) against time, predicted by using
one-, two-, and three- input neural networks.

The comparison of all three cases is presented in Fig. 5. The average
percentage difference of the failure rate with that of the actual data is
found to be 19.84%, 8.56%, and 5.66% for neural networks having
one, two, and three inputs, respectively. Moreover, with informal
visual inspection of Fig. 5, it can be observed that the neural-network
model with three inputs is closer to the actual data than other cases
(i.e., one and two inputs). Therefore, the three-input neural-network
model has been adopted for the present study.

The working flow chart of the entire neural-network analysis is
shown in Fig. 6, and the neural-network architecture employed is
shown in Fig. 7. The sizes of the weight matrices W1, W2, and W3

are 2 × 4, 4 × 3 and 1 × 5, respectively. Training the BP network
requires the following:

1) Select the training pair from the training set; apply the input
vector to the network input terminal.

2) Calculate the output of the network [using Eqs. (1)–(4), forward
pass].

3) Calculate the error (the difference between the network output
and desired output).
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4) Adjust the weights of the network in a way that minimizes the
error. It would quicken the process if the weights not being used are
zeroed out.

5) Repeat steps 1 through 4 for each vector in the training set until
the error for the entire set is acceptably low. Steps 1 and 2 constitute
the forward, and steps 3 and 4 are the reverse passes.

These steps can easily be understood by the flow chart shown in
Fig. 8.

Model Adequacy and Comparison
Evaluating the model adequacy is an important part of any model-

building problem. The idea is to examine whether the fitted model is
in agreement with the observed data. An informal visual assessment
method has been adopted. Figure 9a shows a comparison between
the actual and the predicted failure rate for P1A, using a neural
network and the Weibull model. For the performance evaluation
of the neural-network model and the regression model, a predictive
accuracy of the two models for the given tire data has been compared.
Figures 9a through 9f show the actual failure rate, the predicted
failure rate from the neural-network model, and the predicted failure

Fig. 6 Working flow chart of neural-
network analysis.

Fig. 7 Neural-network architecture.

rate from the Weibull regression model for the six tires of the first
airplane, that is, 724A. In general, it is observed from the results in
Figs. 9a–9f, 10a–10c, and 11a–11c that the neural-network model
predicts the failure rate better than the Weibull regression model.
The results can be considered in two groups (groups A and B).
Group A is when the rate of F(t), with respect to (ti − t0), is large at
the earlier stage or becomes large after a short time, and/or if there is
no major change in the rate of F(t) that takes place and remains that
way for a longer time, for example, Fig. 9a for the first tire of the
first airplane, P1A. Group B is when the rate of F(t), with respect
to (ti − t0), at the earlier stage is small and remains small for a long
time, and/or if there is a major change in the rate of F(t) that takes
place and remains that way for a long time, for example, Fig. 10b
for the fifth tire of the second airplane, P5B.

Group A can be considered as ten tires: P1A, P3A, P4A, P1B, P3B,
P4B, P5B, P6B, P1C, and P5C. Group B can be considered as eight
tires: P2A, P5A, P6A, P2B, P2C, P3C, P4C, and P6C. The first airplane is
taken as a typical case as shown in Figs. 9a through 9f for tires P1A,
P2A, P3A, P4A, P5A, and P6A, respectively. For the other airplanes,

Fig. 8 Flow chart of neural-network algorithm.
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Fig. 9a Failure F(t) for the Dash-8 tire P1A vs failure data, h.

Fig. 9b Failure F(t) for the Dash-8 tire P2A vs failure data, h.

Fig. 9c Failure F(t) for the Dash-8 tire P3A vs failure data, h.

Fig. 9d Failure F(t) for the Dash-8 tire P4A vs failure data, h.

Fig. 9e Failure F(t) for the Dash-8 tire P5A vs failure data, h.

Fig. 9f Failure F(t) for the Dash-8 tire P6A vs failure data, h.

Fig. 10a Failure F(t) for the Dash-8 tire P1B vs failure data, h.

Fig. 10b Failure F(t) for the Dash-8 tire P5B vs failure data, h.
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Fig. 10c Failure F(t) for the Dash-8 tire P6B vs failure data, h.

Fig. 11a Failure F(t) for the Dash-8 tire P3C vs failure data, h.

Fig. 11b Failure F(t) for the Dash-8 tire P4C vs failure data, h.

Fig. 11c Failure F(t) for the Dash-8 tire P5C vs failure data, h.

representative results are shown in Figs. 10a–10c and 11a–11c. For
group A, the first, third, and fourth tires of first airplane (P1A, P3A,
and P4A); first, fifth, and sixth tires of second airplane (P1B, P5B,
and P6B), and fifth tire of third airplane (P5C) are shown in Figs. 9a,
9c, and 9d; 10a–10c; and 11c, respectively. For group B, the second,
fifth, and sixth tires of first airplane (P2A, P5A, and P6A) and third
and fourth tire of third airplane (P3C and P4C) are shown in Figs. 9b,
9e, and 9f and 11a and 11b, respectively.

Conclusions
In this study, the failure rates of the tires of three De Havilland

Dash-8 airplanes are modeled using both a neural network and the
Weibull regression model. A two-layered neural-network model
is used. A comparative study shows that the three-input neural-
network model performs much better with lesser percentage differ-
ence from the actual data than the two- and one-input models as
verified by visual inspection. From the comparison between neural-
network and Weibull regression models, it can be concluded that
the neural network, in general, predicts better than the Weibull re-
gression model, particularly when the rate of F(t) with respect to
(t − t0) at the earlier stage is small and remains small for a long
time, and/or if there is a major change in the rate of F(t) that takes
place and remains that way for a long time.
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